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Abstract: In this communication the case in which an 

aerodynamic actuator failure occurs to an aircraft while it 

has to perform some guidance maneuver is considered. This 

problem is dealt with the reassignment of remaining 

operational actuators in order to perform the required 

maneuver while maintaining the structural integrity of the 

aircraft. Nonlinear Inverse Control technique is used to 

generate online nominal moments along the three axes of 

the aircraft. Taking into account all material and structural 

constraints as well as the redundant effects from other 

actuators, a mathematical programming problem to be 

solved on-line which related to control reallocation can be 

formulated. Solution techniques, based on dynamic neural 

networks, active set methods and interior point methods are 

discussed and the respective performances are compared. 

 

Keywords: active set, interior point, neural network, on-

line optimization, fault tolerant flight control 

 

1 INTRODUCTION 

In this study we consider a transportation aircraft in the 

situation in which a main aerodynamic actuator failure can 

occurs while it has to perform some guidance maneuver. 

Here through a nonlinear dynamic inversion (NLI) of the 

flight dynamics, the necessary moments to perform a given 

guidance maneuver are computed. It is supposed that a fault 

detection and identification (FDI) module is monitoring on-

line the whole set of control channels and actuators. In this 

study it is supposed that this FDI module presents high 

standards of reliability, accuracy and timeliness, so its 

design characteristics and operations principles are not 

discussed in this paper. References [1-3] present up to date 

achievements in this area.  

So when an actuator failure occurs, is detected and 

correctly identified, an on-line reassignment and resetting of 

the remaining redundant actuators must be performed with 

the aim of achieving anyway the planned maneuvers. The 

question is tackled here by formulating on-line optimization 

problem whose solution will provide continuously new 

reference values for these actuators, therefore allow 

performing the planned maneuver in a nominal or a 

degraded way. This represents the main difference with 

other previous approaches to actuator fault management
[4-6]

. 

In this study, is adopted a linear quadratic programming 

formulation of the optimization problem to be solved on-

line since many optimization methods exist to solve it rather 

efficiently. Among these methods, active set methods, 

interior point methods and neural network dynamic solvers, 

described in [7-9], have been considered and compared. The 

main issue is to check if the performances of these 

techniques are compatible with their on-line operation 

onboard aircraft to deal with the actuator reassignment and 

resetting problem under failure. 

 

2 EFFECTIVENESS OF AERODYNAMIC ACTUATORS 

The effectiveness of the control surfaces appears through 

the contributions of their angular deflections to the 

dimensionless coefficients present in the expressions of 

aerodynamic forces and torques
[10]

. These control surfaces 

produce a collective external effect over the whole aircraft 

as well as internal efforts which should satisfy structural 

constraints. The global dimensionless coefficients used to 

express aerodynamic forces are assumed to be given by: 

 Cx = Cx0 + k Cz
2 (1.1) 

 Cy = Cyβ β + Cyp plA/V + Cyr rlA/V+ Cyδp’δp + Cyδr’δr (1.2) 

 Cz = Cz0 + Czα α + Czδths δths + Czδq’δq (1.3) 

where k is a positive coefficient and the Cij are 

dimensionless aerodynamic derivatives, V is the airspeed, δths is the angular position of the trimmable horizontal 

stabilizer and lA is a reference length. Here p, r are 

respectively the roll and yaw rates, α is the angle of attack, β is the side slip angle, δp, δq, δr are respectively the aileron, 

elevator and rudder deflections.  

The dimensionless coefficients of the main axis 

aerodynamic torques can in general be expressed such as: 

Cm = Cm0 + Cmα α + Cmq qlA/V + Cmδths δths + Cmδq’δq (2.1) 

Cl = Cl0 + Clβ β + Clp plA/V + Clr rlA/V+ Clδp’δp + Clδr’δr (2.2) 

Cn = Cn0 + Cnβ β + Cnp plA/V + Cnr rlA/V + Cnδp’δp + Cnδr’δr(2.3) 

where q is the pitch rate. According to the relationship 

between aerodynamic derivatives and aerodynamic torque, 

the expression of the different aerodynamic torques 

generated by the control surfaces can be approximated by 

an affine form with respect to the corresponding deflections 

of the different aerodynamic actuators, so that we get 

expressions such as: 

 ( ) ( ) ( ) (0

ik ik ik k )M t M t t tμ δ= +  (3) 

 



where Mik(t) is the i
th

 considered torques (roll, pitch, yaw, 

bending, flexion), δk(t) is the deflection of the k
th

 

aerodynamic actuator (k∈K={aileron, flap, right spoilers, 

left spoilers, elevator, rudder}) and ȝik(t) is the current 

effectiveness of actuator k to produce moment i. The current 

values Mik
0
(t) and ȝik(t) depend on the airspeed V, the flight 

level and on the values of α, β, p, q and r. Global 

aerodynamic torques generated by aircraft aerodynamic 

actuators can be rewritten in a global affine form as: 
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with L MI I I I= ∪ ∪ N , where I
L
 is the set of actuators 

generating some roll moment, I
N
 is the set of actuators 

generating some yaw torque, while I
M

 is the set of actuators 

generating pitch moments. Figure 1 displays, in the case of 

a A340 aircraft, the different aerodynamic surfaces of its 

wing. The current values of 0 ( )L t , ,( )L

iX t 0 ( )M t , ,  

and  depend on the airspeed V, the flight level and α, β, 
p, q and r. 
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3 ACTUATORS CONSTRAINTS AND LIMITATIONS 

The deflection of each aerodynamic surface is subject to 

minimum and maximum bounds while its deflection rates 

are limited by the adopted actuator technology. Also, global 

physical constraints must be taken into account to ensure 

aircraft integrity especially when some actuators fail. These 

limitations should be taken explicitly into consideration by 

the reallocation system. 

3.1 ACTUATORS POSITION AND SPEED LIMITATIONS 

With respect to control surfaces, the following bound 

constraints should be met: 

  (5.1) Iiiii ∈≤≤ maxmin δδδ
  (5.2) Iiiii ∈≤≤ maxmin δδδ
where min

iδ , max

iδ , min

iδ  and max

iδ  are the bounds and maximum 

deflection speed values. These conditions can be considered 

at sampled instants, it becomes: { } { }min min max maxmax , ( ) ( ) min , ( )i i i i i i it t t t t t tδ δ δ δ δ δ δ− Δ + Δ ≤ ≤ − Δ + Δ

3.2 GLOBAL CONSTRAINTS 

Global constraints are in general related with structural 

considerations. It has been shown that total wing bending 

and flexion torques during maneuver can be written in an 

affine form as
[11]

: 

 ( ) ( ) ( ) ( )
wing

b b bi i

i I

M t A t Y t tδ
∈

= + ∑  (7.1) 

and 

 ( ) ( ) ( ) ( )
wing

f f fi i

i I

M t A t Y t tδ
∈

= + ∑  (7.2) 

with  is the set of wing actuators contributing to 

the bending and the flexion torques, where A

wingI ⊂ I

≤

b, Ybi, Af and Yfi 

depend on the airspeed V, the flight level and α, β, p, q and r. 

Then the global wing bending and flexion constraints can 

be written as:  

 
max( ) ( ) ( )

wing

b bi i bend

i I

A t Y t t Mδ
∈

+ ∑  (8.1) 

and 

 ( ) ( ) ( ) max
flex

Ii

ifif MttYtA
wing

≤+ ∑
∈

δ  (8.2) 

where  and max

bendM max

flexM are maximum acceptable bending and 

flexion torques at the wing root. Here it is supposed that the 

satisfaction of these global constraints implies the 

satisfaction of local bending and flexion torque constraints. 

To illustrate the proposed approach, here is considered 

the case of a pure stabilized roll maneuver where the 

following conditions should be met by the body angular 

rates of the aircraft: 

 cp ppp =+τ  (9.1) 

  (9.2) 0=q

  φτ sin)/( Vgrrr =+  (9.3) 
Fig. 1 Example of Wing Actuators (A340) 

There roll and yaw motions follow first order dynamics 

while pitch dynamics remains frozen. Here pc is the desired 

roll rate, τp and τr are time constants. The dynamic 

constraint relative to the yaw rate is characteristic of a 

coordinated turn and its completion should allow avoiding 

noticeable lateral load factors during this roll maneuver. 

Applying the non linear inverse control approach
[12]

, the 

necessary on-line values for each aerodynamic torque are 

obtained:  

 2( ) ( ) ( ) ( ) ( ( ) ( ) )2M t A C r t p t E p t r t= − + −  (10.1) 

and 

 

1
( ( ))

( )

1( )
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 (10.2) 

(6) 

The adopted fault tolerant structure (FTC) is displayed in 

Fig. 2, where cω  represents the target from autopilot or 

auto-guidance system, cω  represents the modified target 

taking into account the limited capability after failure, 

rδ represents the current settings for the remaining actuators, 

resulting from the on-line solution of the actuator 



reassignment problem, while δ~  represents the effective 

settings of the actuators, the difference between them 

resulting from the actuators dynamics. The solid line 

represents main signal flow, and the dotted line represents 

the data flow for FDI function. 

 

 
Fig. 2 Adopted Fault Tolerant Control structure 

 

4 FORMULATION OF ACTUATOR REALLOCATION PROBLEM 

Here we consider the situations where the failure affects 

some of the commonly used actuators but the designed 

actuator redundancy still allows performing some 

maneuvers. 

Depending on the remaining degree of redundancy 

between elementary actuators, it may be possible to find a 

solution matching exactly the following moment constraints: 

  (11.1) 0( ) ( ) ( ) ( )
L

L

i i

i I

X t t L t L tδ
∈

= −∑
  (11.2) 0( ) ( ) ( ) ( )

M

M

i i

i I

X t t M t M tδ
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N

N

i i

i I

X t t N t N tδ
∈

= −∑
In this case the maneuver will be performed still in a 

standard way, otherwise, an approximate maneuver will be 

performed. In order to get a feasible reassignment which 

avoids too fast or too large solicitations of the actuators 

which could activate some structural modes of the aircraft, 

solutions as close as possible to the solution adopted at the 

previous control period will be privileged. Also, it is 

admitted that when the standard maneuver can no more be 

performed, a close maneuver, in fact a slightly degraded 

maneuver, will be retained as a running solution. So, instead 

of considering the pure satisfaction of the moment 

constraints (11.1), (11.2) and (11.3), a measure 

( , , , )m L M Nδ of the degree of satisfaction of these constraints 

is introduced. In this study the following measure of 

satisfaction of the constraints has been adopted: 
0 2

0

0 2

( , , , ) ( ( ) ( ) ( ) ( ))
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∈
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+ − +
+ − +

∑
∑
∑

2))  (12) 

where wL, wM and wN are positive weights. Then we 

formulate a linear quadratic optimization problem to be 

solved on-line. This problem considers the following 

objective function to be minimized: 

 2( ) ( ( ) ( )) ( , , , )i i i

i I

J t t t m Lδ π δ δ γ δ
∈

= ⋅ − − Δ + ⋅ M N∑  (13) 

where the ,i i Iπ ∈ and γ are positive weights. 

The complete definition of this optimization problem is 

such as: 
 )

~
(min

~
δδ J  (14) 

with the following structural constraints: 

 max( ) ( ) ( )
wing

b bi i bend

i I

A t Y t t Mδ
∈

+ ≤∑  (15.1) 

 max( ) ( ) ( )
wing

f fi i flex

i I

A t Y t t Mδ
∈

+ ≤∑  (15.2) 

and with the box constraints: 

 { }min minmax , ( ) ( )  i i i i F
t t t t i Iδ δ δ δ− Δ + Δ ≤ ∈  (16.1) 

 { }max max( ) min , ( )   i i i i F
t t t tδ δ δ δ i I≤ − Δ + Δ ∈  (16.2) 

 { }min minmax , ( ) ( )  i i i i Ft t t t i Iδ δ δ δ− Δ + Δ ≤ ∈ L
 (16.3) 

 { }max max( ) min , ( )   i i i it t t tδ δ δ δ≤ − Δ + Δ FLi I∈  (16.4) 

 { }min minmax , ( ) ( )  i i i i Ft t t t i Iδ δ δ δ−Δ + Δ ≤ ∈ S  (16.5) 

 { }max max( ) min , ( )   i i i it t t tδ δ δ δ≤ −Δ + Δ FSi I∈  (16.6) 

with 

 0
jiδ =  if j FFi I∈ , { }, , ,j p q r ths∈  (17.1) 

 
j ji iδ δ=  if j FPi I∈ , { }, , ,j p q r ths∈  (17.2) 

where F
I  is the set of fully operational actuators, FLI , FSI  

are respectively the set of actuators whose angular positions, 

angular speed are subject to additional limitations, FFI  is 

the set of actuators which are not subject to a torque from 

their servo-control and with a zero deflection, FPI  is the set 

of actuators which are stuck at a known angular position. 

The positive parameters wL, wM and wN are chosen in the 

case of a roll maneuver such as: 

  and   (18) Lw w>> M NLw w>>
The above mathematical programming problem can be 

solved using standard programming techniques. Using the 

previous period value of the deflections of the actuators as 

initial values of current period, then in a few iterations the 

solution of this small size linear quadratic problem should 

be obtained. 

 

5 NUMERICAL SOLVERS APPLIED TO LINEAR QUADRATIC 

OPTIMIZATION PROBLEMS 

Problem (14-17) can be rewritten as a general quadratic 

programming problem as follows: 



 ( ) 1
min  

2

T Tf Q cδ δ δ δ δ= +  (19) 

s.t.      ( ) g A bδ δ= − ≤ 0  (20.1) 

 ξ δ ξ− ≤ ≤ +
 (20.2) 

where 1nRδ ×∈  is the actuator deflections vector in our case 

and matrix  is assumed to be symmetric positive 

definite, 

n nQ R ×∈
m nA R ×∈ , 1mb R ×∈ . This problem, as a convex 

mathematical programming problem can be solved by many 

different iterative algorithms
[13,14]

. Recently, classical 

methods such as active set and interior point methods have 

been applied to the actuator allocation problem
[15,16]

 and to 

fault tolerant control
[8,9]

. Also, dynamic solvers based on 

neural network have been proposed to solve the considered 

problem in the context of fault tolerant control
[7]

. 

Based on duality theory of Mathematical Programming 

and Lagrangian function, a lower bound can be found for 

the performance of the solution of the optimization problem 

(19, 20). Assume that the set of constraints (20) is not 

empty, otherwise there will be no possibility to perform the 

proposed maneuver. Then based on the first order derivative 

of the Lagrangian function, the complementary conditions 

and constraints, necessary and sufficient Karush-Kuhn-

Tucker (KKT) conditions
[17]

 can be deduced for the optimal 

solution of problem (19, 20)
[13,14]

.
 

Then, by finding a 

solution satisfying the KKT conditions, the optimal solution 

of the original problem is obtained. Many numerical solvers 

such as active set, interior point and neural network are 

based on this idea. For convenience, we list only the basic 

ideas while the details of the corresponding algorithms can 

be found in [13,14,18]. 

The two main characteristics which are expected from the 

considered methods in this real time context are a very short 

computation time with respect to the response time of the 

actuators (a ratio around one to ten) and the feasibility of 

the solution even in a time-out situation in which the 

optimization process is interrupted. 

 

5.1 ACTIVE SET METHODS 

Active set is a name for a family of methods used to solve 

optimization problems with a relatively large number of 

interval constraints. The idea underlying active set methods 

is to generate successive partitions of the inequality 

constraints set into two groups: one where the constraints 

are to be treated as active constraints and one where the 

constraints are to be treated as inactive constraints (and be 

ignored someway at a given stage of the solution process). 

At each iteration, active inequality constraints will be 

treated as equality ones and constitute the working set. 

Through the partitions of the inequality constraints set, the 

method reduces the constrained problem to a sequence of 

equality constrained sub-problems where the inactive ones 

are temporarily ignored, while an updating process modify 

the working set along the search process towards the 

solution.  

Problem (19, 20) can be written as: 

 ( ) 1
min  

2

T Tf Q cδ δ δ δ δ= +  (21) 

s.t.  ( ) 0g A bδ δ= − ≤  (22) 

where d

d

A

A I

I

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥−⎣ ⎦
, 

b

b ξ
ξ
+
−

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥−⎣ ⎦
and Id is an identity matrix of 

size n×n. 
At each iteration, the active set method solves a sub-

problem (equality constrained QP) written as: 

 ( ) 1
min  

2

T

w

Tf Q cδ δ δ δ δ= +  (23) 

s.t.  0w wA bδ − =  (24) 

The subscript w denotes the working set index. The 

solution at the k
th

 iteration is written δk. Let pk+1 be the 

solution of problem (23, 24) at iteration k. Then we have: 

 ( ) (
1

1 1 1 1

1
min  

2k

T T

w k k k k k
p

)f p p Qp p Qδ
+ + + + + c= + +  (25) 

s.t.  
1 0w kA p + =  (26) 

Consider the KKT conditions of problem (25, 26). 

 
( )1

1
00

T
k kw

w k

p Q cQ A

A

δ
λ

+
+

⎧ ⎫⎡ ⎤ ⎧ ⎫− +⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎩ ⎭⎣ ⎦ ⎩ ⎭  (27) 

As long as w  is full row-rank, and since Q is here a 

positive definite matrix, the coefficient matrix in (27) 

termed as KKT matrix is nonsingular.

A

14
 Then Solving (27) 

is straightforward and we obtain a new search direction pk+1 

and the associated Lagrange multipliers Ȝk+1. According to 

their values, the current solution may be an optimum or else 

it should be updated. 

When the current solution needs to be updated, the 

corresponding step length can be derived from a line search 

process: 

 1 1k k k k 1pδ δ α+ + += +  (28) 

To make sure that δk+1 is feasible, it is only necessary to 

consider the constraints that are not in the working set and 

such as 
1i kA p + , while  

1k
0> α +  must be as large as possible 

within [0,1]. So 
1kα +  is given by: 

 
1

1
, 0

1

min 1, min
k i k

i i k
k

i w A p
i k

b A

A p

δα
++ ∉ > +

⎧ ⎫⎛ ⎞−⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (29) 

Based on the above considerations, an algorithm can be 

derived. For the details of the algorithm, see [8]. If there are 

only bound constraints and no other inequality constraints, 

problem (25, 26) can be reformulated as an unconstrained 

least square problem like in [15] and the computation of its 

solution will be easier. In the present case, with the presence 



of structural integrity constraints, the method based on the 

KKT matrix should be used.  

It has been already proved that the active set method 

solves problems such as (19, 20) after a rather small number 

of iterations.
 [13] 

 

5.2 INTERIOR POINT METHODS 

The idea of interior point methods is to approach the 

solution of the KKT equations by successive descent steps. 

Each descent step is a Newton-like step and is obtained by 

solving a system of linear equations. The main advantage of 

interior point methods over active set method is their 

scalability.
 [16,19]

To turn problem (19, 20) into a standard form for interior 

point methods, let 

 xδ ξ −= +  (30) 

Substituting (30) into (19) and (20), and omitting the 

constant term in the objective function which will not 

impact the final solution, the original problem is equivalent 

to the following problem: 

 ( ) 1
min  

2

T

x

Tf x x Qx x= + c  (31) 

s.t.  ( ) g x Ax b= + ≤ 0  (32.1) 

0 x x+≤ ≤  (32.2) 

where c Q cξ −= + , b A bξ −= −  and x ξ ξ+ += − −
.  

Adding slack variables y, z to turn inequalities into 

equalities, we get the following formulation: 

1
min  

2

T

x

Tx Qx x c+  (33) 

s.t.   0,Ax b y x z x++ + = + =  (34.1) 

0, 0, 0x y z≥ ≥ ≥  (34.2) 

One of the basic ideas behind the interior point methods is 

to use barrier functions to satisfy the bound constraints. 

Then a modified Lagrangian for problem (33, 34) expressed 

as: 

( ) ( )
( ) ( ) (

1 1

1

1
= log log

2

log

n m
T T

i i

i i

n
T T

i

i

L x Qx x c x y

z Ax b y x z

τ τ
τ μ ϕ

= =

)x+
=

+ − −
− + + + + +

∑ ∑
∑ −

 (35) 

is introduced, where 0τ >  is the barrier parameter and is 

used to guide the solution along a trajectory called the 

central path. Equation (35) approximates the Lagrangian of 

problem (33, 34) more and more closely as τ goes to 

zero
[13,14]

.
 
Here ȝ, φ are the dual variables associated to the 

equality constraints (34.1). Adopting the modified 

Lagrangian function (35), the necessary and sufficient 

conditions for the global minimum of convex problem (35) 

i.e. the KKT conditions, can be derived as: 

 0T

x L Qx c Aλ μ ϕ∇ = + − + + =  (36.1) 

 0y L Y eμ τ∇ = − =  (36.2) 

 0z L Z eϕ τ∇ = − =  (36.3) 

 0X eλ τ− =  (36.4) 

 =0L Ax b yμ∇ = + +  (36.5) 

 0L x z xϕ +∇ = + − =  (36.6) 

 0, 0, 0, 0, 0, 0x y z λ μ ϕ> > > > > >  (36.7) 

where X, Y, and Z are diagonal matrices whose diagonal 

elements are x, y, z respectively. Here Ȝ is another dual 

variable. The quantity T T T
x y zλ μ+ + ϕ  is termed as duality 

gap.
 [13,14]

Applying Newton’s method to the above system of 

equations (36), we obtain the linear system to be solved: 
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 (37) 

where ȁ, Ȃ and Φ are diagonal matrices whose diagonal 

elements are Ȝ, ȝ and φ, respectively. The Id· matrices are 

identity matrices with appropriate dimensions. The residuals 

r· are defined as: 

,   ,   ,

,   ,   

T

x y zr Qx c A r Y e r Z e

r X e r Ax b y r x z xλ μ ϕ

λ μ ϕ μ τ ϕ τ
λ τ +

= + − + + = − = −
= − = + + = + − (38) 

Equation (38) can be solved progressively as: 
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X r x Y r y

Z r z

μ ϕ
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−

− −

−

Δ = − Δ = − + Δ Δ = − + Δ
Δ = − + ΛΔ Δ = − +ΜΔ
Δ = − +ΦΔ

(39.1) 

where 

 
1 1TH Q X A Y A Z− − 1−= + Λ + Μ + Φ  (39.2) 

1 1 1 1 1T T

t x y zr r A Y r Z r X r A Y r Z rλ μ ϕ− − − − −= − − + + Μ + Φ (39.3) 

Since Q is positive definite, A is full row rank and during 

iteration, x, y, z, Ȝ, ȝ, φ remain greater than zero, H is an 

invertible matrix. 

Various algorithms can be derived depending on whether 

solving the primal or the dual variables and on the choice of 

the initial point x
0
. Following [16], the values of x

0
, z

0
, Ȝ0

, ȝ0
, 

φ0
 can be chosen such that rx=0 and rφ=0. In the present 

case, x
0
 may be chosen as the vector of the mean values of 

the upper and lower bounds or the values at the previous 

instant. Then, the values of z
0
, Ȝ0

, ȝ0
, φ0

 are chosen based on 

the values of x
0
. Moreover, under normal situation, (34.1) 

can be strictly satisfied with a positive vector y
0
 and z

0
.  

Based on (38, 39), a feasible-initialization primal-dual 

path-following algorithm has been be proposed in [9] where 



the detailed description and setting of the method are 

available. It appeared there that interior point methods can 

handle the considered failure situation satisfactory even if 

some realistic factors such as the dynamics of the actuators 

and dynamic inversion controller time lags have not been 

considered in the problem formulation.  

 

5.3 NEURAL NETWORK METHOD 

The basic idea for solving an optimization problem using 

a tailored neural network is to make sure that the neural 

network will converge asymptotically and that the 

equilibrium point of the neural network will correspond to 

the optimal solution of the optimization problem. Motived 

by the online solution of linear and quadratic programs, a 

primal-dual neural network scheme based on linear 

variational inequalities (LVI) has been proposed by Zhang 

which has proven its global convergence.
 [18]

 Based on the 

KKT conditions of problem (19, 20), the original problem 

can be turned equivalent to the following set of linear 

variational inequalities:  

 ( ) ( ) 0
T

s s Ns p∗ ∗− + ≥   ∀s∈Ω (40) 

with the primal-dual variables 
T

T Ts uδ⎡= ⎣ ⎤⎦ , u is the dual 

variable vector corresponding to inequality constraint (20.1). 

Then the problem is to find a solution vector s* where its 

feasible region Ω  and its lower/ upper limits are given by: { }: , 0 ,
T

s sς ς ς ξ ς ξ ω− + − − + +⎡ ⎤ ⎡Ω = ≤ ≤ = =⎣ ⎦ ⎣ T+ ⎤⎦ (41) 

Here ω+
 is considered with the appropriate dimension and 

each of its entries is sufficiently large to replace numerically  

. The coefficients are defined as: +∞
 

T
T Tc bρ ⎡ ⎤= ⎣ ⎦    (42) 

0

TQ A
N

A

⎡= ⎢−⎣ ⎦
⎤⎥

Then the neural network model which solves problem (19, 

20) is given by: 

 ( ) ( )( ){ }3

T

d

ds
I N P s Ns s

dt
η Ω= + − + −ρ

i

i

 (43) 

where η is a positive learning parameter which can be used 

to adjust the convergence speed of the network, 3dI is an 

identity matrix,  is a piecewise-linear function defined 

as:  
[ ]PΩ ⋅

 [ ]
,    if 

,   if 

,   otherwise

i i

i i i

i

s

P s s

s

ς ς
ς ς
− −
+Ω

⎧ ≤⎪= ⎨⎪⎩
+≥  (44) 

Numerical application of this neural network approach 

have shown its feasibility [7]. 

 

6 COMPARATIVE APPLICATION OF THE THREE SOLVERS 

TO THE ACTUATORS REASSIGNMENT PROBLEM 

Here we consider a large transport aircraft with 120 tons, 

flight speed 120m/s, initial angle of attack is 4º, the desired 

maneuver is a coordinated turn expressed in (9). This 

aircraft has four ailerons, four elevators, and two rudders 

whose position and slew rate limits are given in Table I. All 

these actuators follow first-order dynamics and their time 

constants are also shown in Table I. The time constant in (9) 

are all chosen as 1/3s. The adopted control scheme is 

illustrated as Fig. 2. Here mainly give the simulation results 

of the optimized based control allocation problem (19), (20). 

Due to the lack of modelling parameters, structural 

constraints are not considered. Actually, with the command 

governor, it will not affect the demonstration because there 

always exists solutions to the problem. 

Table I. Parameters of actuators under nominal condition 

Actuator
No. of 

actuators

Position 

limits 

Slew rate 

limits 

Time 

constant

aileron 4 -25º ~ 25º -25º/s ~ 25º/s 0.15s 

elevator 4 -25º ~ 10º -15º/s ~ 15º/s 0.15s 

rudder 2 -30º ~ 30º -25º/s ~ 25º/s 0.3s 

 

To check the feasibility and performances of three solvers 

for on-line flight fault tolerant control, two fault scenarios 

have been considered: a soft one where only a deflection 

rate is affected by a fault and a hard one where a main 

actuator remains stuck. The command and desired 

coordinated maneuver to be performed is illustrated in Fig. 

3 where only roll rate is illustrated and pitch must 

maintained equal to zero, and yaw rate will change 

according to equation (9.3). We hope the final maneuver 

will be as closely as possible to the desired maneuver. From 

Fig. 3 to Fig. 13, the star symbol denotes the failure instant. 

 
In the numerical application, the sampling time adopted 

by the digital control system of the different actuators is 

taken equal to 0.05s. The weights of the optimality criterion 

(13) are chosen as, γ = 10
-6

, the weighting parameters for 

various angle rates and actuators are all equal to one. The 

parameters for the neural network are chosen as 10
10

 to 

replace numerically +∞  in (31) and η = 10
7
. 

 

6.1 SOFT FAULT SCENARIO 

In  this case it is assumed that all actuators are fault free 

except for the rate limits of the right outer aileron which 

changes to ±5 deg/s at 1s.  

The time evolution of ailerons command is shown in Fig. 

4 where smooth evolutions can be observed and the 

trajectory are only small different for three solvers. From 

Fig. 5 (a) and (b), active set method appears to need much 

less iterations than the programmed interior point method 

because of the small size of the problem (the computation 

time is not accurate because it changes a lot between 

different run). Also, the whole convergence trajectory of the 

built neural network for different instant is shown in Fig. 6 

(a), which seems like a staircase because of the fast 

convergence at each instant and it takes about 0.01ms to 



convergent as shown in Fig. 6 (b). Under these three 

methods, desired maneuver will be almost obtained from 

Fig. 7 (a) to (c), the differences between real and desired 

maneuver mainly from the actuator dynamics. Fig. 8 (a), (b) 

and (c) display the speed of the failed actuator which 

reaches at different stages its speed limit when using active 

set and neural network and the trajectory look the same 

under these two solvers, however, it never reaches speed 

limit when using interior point due to the contour of 

objective function become very smooth and not enough 

iteration has been done for interior point. From them, it 

seems that the performance of active set method is the best 

because it will find the exact optimum at a fast speed, and 

the performance of neural network is almost the same as 

active set. It appears that these three methods can handle the 

soft failure situation satisfactory even if many realistic 

factors such as time lags caused by FDI and NLI are not 

considered. 
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Fig. 3 Time evolution of command and desired maneuver (only 

display roll angular rate, pitch and yaw rates remain at zeros) 
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(a) Result of interior point 
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(b) Result of active set 
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(c) Result of neural network 

Fig. 4 Evolution of ailerons commands under soft fault scenario 
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(a) Result of interior point 
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(b) Result of active set 

Fig. 5 Number of iterations and computation time for interior point 

and active set under soft fault scenario 
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(a) Evolution of network outputs during the whole time-span 
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(b) zoomed picture to show the convergence speed of network 

Fig. 6 Convergent behavior of the neural network solver (0.01ms) 

 

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

6

8

10

12

14

time(s)

a
m

p
lit

u
d
e
(° /s

)

real and desired roll angular rate

 

 

p
real

p
des

 



0 1 2 3 4 5 6 7 8 9 10
-0.015

-0.01

-0.005

0

0.005

0.01

time(s)

a
m

p
lit

u
d
e
(° /s

)

real and desired pitch angular rate

 

 

q
real

q
des

 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

time(s)

a
m

p
lit

u
d
e
(° /s

)

real and desired yaw angular rate

 

 

r
real

r
des

 
(a) Result of interior point  
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 (b) Result of active set 
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(c) Result of neural network 

Fig. 7 The real and desired angular rates under soft fault scenario 
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(a) result of interior point 
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 (b) result of active set 

0 1 2 3 4 5 6 7 8 9 10
-25

-20

-15

-10

-5

0

5

10

15

20

25

time(s)

a
m

p
lit

u
d
e
(° /s

)

history of fault actuator command rates

 
(c) result of neural network 

Fig. 8 Command rates for the right outer aileron under soft fault 

scenario 

 

6.2 HARD FAULT SCENARIO 

A more serious failure case occurs when an actuator 

remains stuck. Here, while the configuration of the neural 

network remains the same, since a box constraint is 

considered by the interior point algorithm and for the 

simplicity of the problem, the column corresponding to the 

stuck actuator must be deleted from the control 

effectiveness matrix and the virtual control input and limits 

should be changed accordingly under interior point and 

active set methods. 

We simulate the case where the right outer aileron is 

stuck at its current position at 1s. Simulation parameters are 

the same as before. The corresponding results are displayed 

from Fig. 9 to Fig. 13. 

Here again since angular dynamics, actuator deflections 

and speed are small different with the three techniques, they 

are displayed in Fig. 9, Fig. 10 and Fig. 13. From Fig. 9 and 

Fig.13, it can be concluded that in the considered case, the 

three methods achieve to deal effectively with the faulty 

actuator stuck at a fixed position. 

 From Fig. 10 (a) and (b), it also appears that the active 

set method needs less iterations than the interior point 

method may be because of the small size of the problem.  It 

is maybe due to the same reason when compare Fig. 5 (b) 

and Fig. 10(b). Here also, the neural network converges to 

the solution in 0.01 ms as shown in Fig. 12. From Fig. 13 

(a), (b) and (c), we notice that for three methods, a 

downgraded maneuver is obtained. There is a constant 

deviation for roll rate as shown in Fig. 10, it is because the 

actuator command consider in the optimal problem is 

different from the actual actuator position and cause a 

constant deviation in the final angular rate. This deviation 

also exists in yaw rate but it is less the deviation in pitch 

angular rate. 
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(a) result of interior point 
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 (b) result of active set 
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(c) result of neural network 

Fig. 9 Evolution of actuators commands under hard fault scenario 
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(a) result of interior point 
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(b) result of active set 

Fig. 10 Number of iterations and computation time for interior point 

and active set under hard fault scenario 
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(a) Evolution of network outputs during the whole time-span 
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 (b) zoomed picture to show the convergence speed of network 

Fig. 11 Convergent behavior of the neural network solver (0.01ms) 
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(a) Result of interior point  
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 (b) Result of active set 
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(a) Result of interior point 
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 (b) Result of active set 
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(c) Result of neural network 

Fig. 12 The real and desired angular rates under hard fault scenario 
 

 
(c) Result of neural network 

 Fig. 13 Command rates for the right outer aileron under hard fault 

scenario 

 

 

From the simulation results above, it appears that the 

three considered methods are able, for the two failure 

scenarios, to provide the optimal solution with an 

acceptable response time. The neural network method 

presents by far the best performance with respect to 

computation time (at most 0.01 ms to compare with a 

common actuator sampling time of 0.05 s) but feasibility of 

the solution is only guaranteed at convergence.  The 

computation time performance of the active set method is a 



little bit better than the one of the interior point method, 

both being acceptable. Also these two methods provide at 

each step a feasible solution which can be adopted in the 

case of time-outs. The interior point method reaches the 

solution after a larger number of iterations than the active 

set method but it copes with a problem of larger dimensions 

(more variables and more constraints). From the point of 

view of algorithmic complexity, the active set method 

presents the lower complexity and when an actuator failure 

is detected and identified, the setting of the resulting 

optimization problem and solver appears easier than for the 

interior point method. In the case of the neural network 

solver, its structure is already fixed and some parameters 

will be changed according to the result of the FDI process. 

 

7 CONCLUSION 

In this study the control surface reassignment and 

resetting when a transport aircraft encounter one major 

actuator failure has been considered. The main objective is 

here to guarantee the flight safety through the consideration 

of the remaining maneuverability of the faulty aircraft and 

maintaining as much as possible the capability of the 

aircraft to achieve in a nominal way the necessary 

maneuvers to follow a flight plan. Structural constraints are 

also taken into account. So, it has been shown how to obtain 

the desired maneuver on the basis of a perfect non linear 

inversion of the flight dynamics. 

Numerical methods such as the active set method, the 

interior point method and a solver based on dynamic neural 

networks techniques, have been analyzed and applied to this 

optimization problem. In both considered actuator failure 

scenarios (soft and hard actuator failure), the three solution 

approaches have demonstrated interesting performances 

with some preference for the active set method. Anyway, 

the results obtained from the application of these solution 

methods demonstrate clearly the feasibility of the proposed 

approach characterized by the on-line resolution of an 

optimization problem. 
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