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1 INTRODUCTION 

In this paper we consider a transportation airplane in the 

situation in which a main aerodynamic actuator failure 

occurs while it has to perform guidance manoeuvers. Here 

using dynamic inversion of flight dynamics, the necessary 

moments to perform a given guidance manoeuver are 

computed, and then an optimization problem is considered 

to generate on-line reference values for the actuators. This 

represents the main difference with other previous 

approaches to actuator fault management [1-3]. In the case 

considered here, a linear quadratic programming 

formulation of the optimization problem can be adopted 

and an active set approach to get an on-line solution is 

discussed. The approach is also different from the one we 

proposed [4] before which is based on a neural network 

dynamic solver. 

2 Effectiveness of Aerodynamic Actuators 

The effectiveness of the control surfaces appears through 

the contributions of their angular deflections to the 

dimensionless coefficients present in the expressions of 

aerodynamic forces and torques [5]. These control surfaces 

produce as well a collective external effect over the whole 

aircraft as internal efforts which should satisfy structural 

constraints. The global dimensionless coefficients used to 

express aerodynamic forces are assumed to be given by:  

 Cx = Cx0 + k Cz
2 (1.1) 

 Cy = Cyββ + CypplA/V +Cyr rlA/V+ Cyδp’δp + Cyδr’δr
 (1.2) 

 Cz = Cz0 + Czα α + Czδths δths + Czδq’δq
 (1.3) 

where k is a positive coefficient and the 
ijC are 

dimensionless aerodynamic derivatives. Here p, q, r are 

respectively the roll, pitch and yaw rates, α is the angle of 

                                                           
 

attack, β is the side slip angle, 
rqp δδδ ,, are respectively the 

aileron, elevator and rudder deflections.  

The dimensionless coefficients of the main axis 

aerodynamic torques can in general be expressed such as: 

Cm = Cm0 + Cmα α + Cmq qlA/V +Cmδthsδths+Cmδq’δq
      (2.1) 

Cl = Cl0 + Clβ β + Clp plA/V + Clr rlA/V+Clδp’δp+Clδr’δr
 (2.2) 

Cn = Cn0 + Cnββ + CnpplA/V +CnrrlA/V+Cnδp’δp+Cnδr’δr  
 (2.3) 

where V is the airspeed, 
thsδ  is the angular position of the 

trimmable horizontal stabilizer and 
Al is a reference length. 

Then the expression of the different aerodynamic torques 

generated by the control surfaces can be approximated by 

an affine form with respect to the corresponding deflections 

of the different aerodynamic actuators, so that we get 

expressions such as: 

 kikikik MM δμ+= 0  (3) 

where Mik is the ith considered moment (roll, pitch, yaw, 

bending, twisting), δk is the deflection of the kth 

aerodynamic actuator (k∈K={aileron, flap, right spoilers, 

left spoilers, elevator, rudder}) and ȝik is the current 

effectiveness of actuator k to produce moment i. The 

current values Mik
0(t) and ȝik(t) depend on the airspeed, the 

flight level and on the values of α, β, p, q and r.  Global 

aerodynamic torques generated by aircraft aerodynamic 

actuators can be rewritten in a global affine form as: 

 )()()()( 0 ttXtLtL
LIi

i
L
i∑

∈
+= δ  (4.1) 

 ( ) )()()( 0 ttXtMtM
MIi

i
M
i∑

∈
+= δ  (4.2) 

 ( ) )()()( 0 ttXtNtN
NIi

i
N
i∑

∈
+= δ  (4.3) 

with 
L M NI I I I= ∪ ∪ , where 

LI  is the set of actuators 

generating some roll moment, 
NI  is the set of actuators 
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generating some yaw torque, while 
MI  is the set of 

actuators generating pitch moments. Fig 1 displays, in the 

case of a A340 aircraft, the different aerodynamic surfaces 

of its wing. The current values of )(0 tL , )(tX L
i , )(0 tM , 

)(tX M
i

, )(0 tN  and )(tX N
i

 depend on the airspeed, the 

flight level and α, β, p, q and r. 

 
Fig 1. Aerodynamic surfaces of A340 wing 

3 Actuators constraints and limitations 

The deflection of each aerodynamic surface is subject to 

minimum and maximum bounds while its deflection rates 

are limited by the adopted actuator technology. Also, global 

physical constraints must be taken into account to insure 

aircraft integrity. These limitations should be taken 

explicitly into consideration by the reassignment system. 

3.1 Actuators position and speed limitations 

With respect to control surfaces, the following bound 

constraints should be met: 

 Iiiii ∈≤≤ maxmin δδδ  (5.1) 

 Iiiii ∈≤≤ maxmin δδδ  (5.2) 

where min
iδ , max

iδ , min
iδ  and max

iδ  are the bounds and 

maximum deflection speed values. These conditions can be 

considered at sampled instants, it becomes: 

 { } )()(,max minmin tttt iiii δδδδ ≤Δ+Δ−  (6.1) 

and 

 { }tttt iiii Δ+Δ−≤ maxmax )(,min)( δδδδ  (6.2) 

3.2 Global constraints 

Global constraints are in general related with structural 

considerations. It has been shown in [6] that total wing 

bending and twisting torques during manoeuver can be 

written in an affine form as: 

 ( ) ( ) ( ) ( )
wing

b b bi i

i I

M t A t Y t tδ
∈

= + ∑  (7.1) 

and 

 ( ) ( ) ( ) ( )
wing

f f fi i

i I

M t A t Y t tδ
∈

= + ∑  (7.2) 

with II wing ⊂  is the set of wing actuators contributing to 

the bending and the twisting torques, where Ab, Ybi, Af and 

Yfi depend also on the airspeed, the flight level and α, β, p, q 

and r. 

Then the global wing bending and twisting constraints can 

be written as:  

 
max( ) ( ) ( )

wing

b bi i bend

i I

A t Y t t Mδ
∈

+ ≤∑  (8.1) 

and 

 
max( ) ( ) ( )

wing

f fi i flex

i I

A t Y t t Mδ
∈

+ ≤∑  (8.2) 

where 
max

bendM  and 
max

flexM are maximum acceptable 

bending and twisting torques at the wing root. Here it is 

supposed that the satisfaction of these global constraints 

implies the satisfaction of local bending and twisting torque 

constraints. 

4 Optimization Problem Formulation for 

Actuators Reassignment 

To illustrate the proposed approach, here we consider the 

case of a pure stabilized roll manoeuver where the 

following conditions should be met by the body angular 

rates of the aircraft: 

 cp ppp =+τ  (9.1) 

 0=q  (9.2) 

 φτ sin)/( Vgrrr =+  (9.3) 

There roll and yaw motions follow first order dynamics 

while pitch dynamics remains frozen. Here pc is the desired 

roll rate and τp and τr are time constants. The dynamic 

constraint relative to the yaw rate is characteristic of a 

coordinated turn and its completion should allow avoiding 

noticeable lateral load factors during this roll manoeuver. 

Applying the non linear inverse control approach [7], we 

get the necessary on-line values for each aerodynamic 

torque:  

 2 2( ) ( ) ( ) ( ) ( ( ) ( ) )M t A C r t p t E p t r t= − + −  (10.1) 

and 

1
( ( ))

( )

1( )
(( / ( )) sin ( ) ( ))

c

p

r

p p t
A EL t

E CN t
g V t t r t

τ
φτ

⎡ ⎤−⎢ ⎥−⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦

 (10.2) 

Here we consider the situations where the failure affects 

some of the commonly used actuators but the designed 

actuator redundancy still allows performing some 

manoeuvers. 

Depending on the remaining degree of redundancy between 

elementary actuators, it may be possible to find a solution 

matching exactly the following moment constraints: 

 0( ) ( ) ( ) ( )
L

L

i i

i I

X t t L t L tδ
∈

= −∑  (11.1) 

 0( ) ( ) ( ) ( )
M

M

i i

i I

X t t M t M tδ
∈

= −∑  (11.2) 

 0( ) ( ) ( ) ( )
N

N

i i

i I

X t t N t N tδ
∈

= −∑  (11.3) 



  

In this case the manoeuver will be performed still in a 

standard way. Otherwise, an approximate manoeuver 

should be defined.  

In order to get a feasible reassignment avoiding fast and 

large solicitations of the actuators which could activate 

some structural modes of the aircraft, solutions as close as 

possible to the solution at the previous instant will be 

privileged. Also, it is admitted that when the standard 

manoeuver cannot be no more performed, close 

manoeuvers, in fact slightly downgraded manoeuvers, will 

be retained as a running solution. So, instead of considering 

the pure satisfaction of the moment constraints (11.1), (11.2) 

and (11.3) a measure )
~

,
~

,
~

,
~

( NMLm δ of the degree of 

satisfaction of these constraints is introduced. Here we 

propose to choose the following measure:  

 

0 2

0 2

0 2

( , , , ) ( ( ) ( ) ( ) ( ))

                ( ( ) ( ) ( ) ( ))

                ( ( ) ( ) ( ) ( ))

L

M

N

L

L i i

i I

M

M i i

i I

N

N i

i I

m L M N w X t t L t L t

w X t t M t M t

w X t t N t N t

δ δ
δ

δ

∈

∈

∈

= − +
+ − +
+ − +

∑
∑
∑

(12) 

Then here our purpose is to solve on-line a linear quadratic 

optimization problem minimizing the following objective 

function: 

2( ) ( ( ) ( )) ( , , , )i i i

i I

J t t t m L M Nδ π δ δ γ δ
∈

= ⋅ − − Δ + ⋅∑   (13) 

where the Iii ∈,π and γ are positive weights. 

The complete definition of this optimization problem is 

such as: 

 )
~

(min
~

δδ J  (14) 

with the following structural constraints: 

 max( ) ( ) ( )
wing

b bi i bend

i I

A t Y t t Mδ
∈

+ ≤∑  (15.1) 

 max( ) ( ) ( )
wing

f fi i flex

i I

A t Y t t Mδ
∈

+ ≤∑  (15.2) 

and with the box constraints: { }min minmax , ( ) ( )  i i i i F
t t t t i Iδ δ δ δ− Δ + Δ ≤ ∈      (16.1) 

{ }max max( ) min , ( )   i i i i F
t t t t i Iδ δ δ δ≤ − Δ + Δ ∈    (16.2) 

{ }min minmax , ( ) ( )  i i i i FLt t t t i Iδ δ δ δ− Δ + Δ ≤ ∈      (16.3) 

{ }max max( ) min , ( )   i i i i FLt t t t i Iδ δ δ δ≤ − Δ + Δ ∈    (16.4) 

 { }min minmax , ( ) ( )  i i i i FSt t t t i Iδ δ δ δ− Δ + Δ ≤ ∈  (16.5) 

 { }max max( ) min , ( )   i i i i FSt t t t i Iδ δ δ δ≤ − Δ + Δ ∈  (16.6) 

with 

 0
~ =

jiδ  if FFj Ii ∈ , { }thsrqpj ,,,∈  (17.1) 

 
jj ii δδ =~
 if FPj Ii ∈ , { }thsrqpj ,,,∈  (17.2) 

where 
F

I  is the set of fully operational actuators, FLI , FSI  

are respectively the set of actuators whose angular positions, 

angular speed are subject to additional limitations, FPI  is 

the set of actuators which are stuck at a known angular 

position, FFI  is the set of actuators which are not subject to 

a torque from their servo-control and with a zero deflection. 

The positive parameters wL, wM and wN are chosen in the 

case of a roll manoeuver such as: 

 ML ww >>  and  NL ww >>   (18) 

The above mathematical programming problem can be 

solved using standard programming techniques and making 

use as a start of the previous value of the deflections of the 

actuators. Then in a few iterations the solution of this small 

size linear quadratic problem should be obtained.  

5 Active Set Method Applied to Linear 

Quadratic Optimization Problems 

Active set algorithm is a name for a family of methods used 

to solve optimization problems with equality/inequality 

constraints. The idea underlying active set methods is to 

generate successive partitions of the inequality constraints 

into two groups: those that are to be treated as active and 

those that are to be treated as inactive. The method reduces 

equality/inequality constrained problem to a sequence of 

equality-only constrained sub-problems. At each iteration, 

active inequality constraints are treated as equality ones, 

they constitute at that time the working set, inactive ones 

are temporarily ignored and used afterwards to update the 

solution and working set. For a review, see [8], [9]. 

Problem (14-17) can be rewritten as a general quadratic 

programming problem as follows: 

 ( ) 1
min  

2

T Tf Q cδ δ δ δ δ= +  (19) 

 s.t.      ( ) 0g A bδ δ= − ≤  (20.1) 

 ξ δ ξ− +≤ ≤  (20.2) 

where δ can be the actuator deflections vector and matrix Q 

is assumed symmetric positive definite. It has been already 

proved that the active set method solves problems such as 

(19, 20) after a finite number of iterations [8]. 

Here bound limits are taken as two different inequalities 

and problem (19, 20) can be written as: 

 ( ) 1
min  

2

T Tf Q cδ δ δ δ δ= +  (21) 

 s.t.      ( ) 0g A bδ δ= − ≤  (22) 

where d

d

A

A I

I

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥−⎣ ⎦
, 

b

b ξ
ξ

+
−

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥−⎣ ⎦
, Id is an identity matrix of 

size |I|×|I|. 

At each iteration, the active set method solves a 

sub-problem (equality constrained QP). i.e. 

 ( ) 1
min  

2

T T

wf Q cδ δ δ δ δ= +  (23) 

s.t.  0w wA bδ − =  (24) 



  

The subscript w denotes the working set index. The solution 

at  kth iteration is written δk. Let p be the solution of problem 

(23, 24) at iteration k. Then we have 

 ( ) ( )1
min  

2

T T

w k
p

f p p Qp p Q cδ= + +  (25) 

s.t.   1 0w kA p + =  (26) 

Consider the KKT necessary and sufficient optimality 

conditions [10] of problem (25, 26). 

 
( )

00

T

kw

w

p Q cQ A

A

δ
λ

⎡ ⎤ ⎧ ⎫ ⎧ ⎫− +⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎩ ⎭⎩ ⎭⎣ ⎦
 (27) 

As long as wA  is full row-rank, and since Q is a positive 

definite matrix in our case, the KKT matrix in (27) is 

nonsingular [11]. Then Solving (27) is straightforward and 

we get a new search direction pk+1 and the associated 

Lagrange multipliers Ȝk+1. According to their values, the 

current solution can be optimal; otherwise we get a new 

search direction.  

When the current solution needs to be updated, the 

corresponding step length can be derived from a line search 

process: 

 1 1 1k k k kpδ δ α+ + += +  (28) 

To make sure that δk+1 is feasible, we only need to consider 

the constraints that are not in the working set and such as 

1 0i kA p + > , while we want 
1kα +  to be as large as possible 

within [0,1], so 
1kα +  is given by: 

 
1

1
, 0

1

min 1, min
k i k

i i k
k

i w A p
i k

b A

A p

δα
++ ∉ > +

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (29) 

Based on [9], we state here an algorithm to solve problem 

(21, 22) according to the active set approach: 

 

Algorithm: 

Compute or take the previous solution as a feasible starting 

point δ0; 

Let W0 be the working set corresponding to δ0; 

for k = 0,1,2,… 

 solve (27) to find pk+1 and Ȝk+1; 

 if pk+1 = 0 

  if Ȝk+1 >=0  

   STOP with solution δ*=δk; 

  else 

   set j=arg min Ȝk δk+1 = δk; Wk+1=Wk - {j} 

 else (pk ≠ 0) 

  compute αk+1 from (28) 

  δk+1 = δk +αk+1pk+1; 

  if there are new active constraints  

   add one of them to Wk+1; 

  else 

   Wk+1=Wk 

end (for) 

 

In the case in which there are only bound limits, the 

resolution of (27) and the above proposed algorithm can be 

simplified as in [12]. 

6 Application of the Active Set Method to 

Optimal Actuators Reassignment Problem 

This example is taken from [13], which is concerned with 

the control of the unstable lateral/directional dynamics of 

the X-33 vehicle at critical conditions during the entry 

flight. By assuming that a linear relationship exists between 

the rotational speed vector y and the actual actuators 

deflections, [13] formulates the problem as: 

  y = Bδ (30) 

where y = [p q r]T, δ = [δrevi, δlevi, δrbf, δlbf, δrvr, δlvr, δrevo, 

δlevo]
T with δrevi, δlevi = right and left inboard elevons; δrbf, δlbf 

= right and left body flaps; δrvr, δlvr = right and left rudders; 

and δrevo, δlevo = right and left outboard elevons and B is a 

3×8 real valued matrix. Here we assume the rate limits for 

each actuator to be equal to 60 deg/s. 

Now to satisfy (30) as well as control surfaces limits such as 
maxmin

iii δδδ ≤≤  i∈{revi, levi, rbf, lbf, rvr, lvr, revo, levo}, 

we formulate a quadratic programming problem in 

accordance with formation (19, 20) by handling (30) like 

(13). For that, we choose the following optimality criterion 

at time t+Δt: 

( ) ( ) ( ) ( ) ( )TT

t tf y B y Bδ δ δ δ δ γ δ δ= − Π − + − Λ − (31) 

where Λ is a diagonal matrix with diagonal positive 

elements wp, wq, wr., Π is a diagonal matrix with diagonal 

positive elements πi i∈I.  

6.1 Soft fault scenario 

Here we present a simulation scenario where the proposed 

on line optimization algorithm is applied to perform a 

succession of complex roll manoeuvers as shown in Fig 2. 

There it is assumed that all actuators are fault free except 

the rate limits of left inboard elevon which changes to 20 

deg/s at 1.5s. The sampling time adopted by the digital 

control system of the different actuators is taken equal to 

0.05s. The weights of the optimality criterion (31) are 

chosen as, γ = 106, wp = 10, wq = 1, wr = 1, πi = 1, where the 

high value of γ is chosen such that equality constraints such 

as (11) are prioritized. In Fig 2 to Fig 11, the star symbol 

denotes the failure instant. 

From Fig 2, we can see that the algorithm reallocates 

actuators successfully to combine the desired angular rates. 

The time evolution of actuators position is shown in Fig 3. 

The number of iterations and error between desired and 

combined command signals are displayed by Fig 4 and Fig 

5 respectively.  

From Fig 3, the algorithm reallocates the actuators 

successfully and their positions are within position limits at 

every instant. 
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Fig 2. Time evolution of angular rates under soft fault scenario 
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Fig 3. Time evolution of actuators positions under soft fault scenario 
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Fig 4. Number of iterations for convergence under soft fault scenario 
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Fig 5. Angular rate errors under soft fault scenario 

From Fig 4, normally the algorithm will find the optimal 

solution very fast except when a degraded objective should 

be obtained. This degradation can be seen from Fig 5, the 

error between combined and desired command signals can 

be tolerated. From (31), it is clear that the error is 

introduced by the penalty function and the error can be 

reduced by setting γ larger. Fig 6 displays the speed of the 

failed actuator which reaches at different stages its speed 

limit. 
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Fig 6. Example of the speed of actuator under soft fault scenario (e.g. left 

inboard elevon)  

It appears that the active set can handle the failure situation 

satisfactory even if many realistic factors such as the 

dynamics of the actuators and dynamic inversion controller 

time lags where not considered.  

6.2 Hard fault scenario 

A more serious failure case occurs when an actuator 

remains stuck. We simulate the case where the left inboard 

elevon is stuck at its previous position at 1.5s. Simulation 

parameters are the same as in section 6.1, except that the 

maximum amplitude of angular rate p is 10 deg/s for the 

sake of realization. The corresponding results are displayed 

in Fig 7 to Fig 11. 
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Fig 7. Time evolution of angular rates under hard fault scenario 

From Fig 8 and Fig11, it can be concluded that algorithm 

works good to sustain the fault actuator at a fixed position 

after failure. From Fig 7 and Fig 10, the resulting angular 

rates are in the tolerance. More importantly, the algorithm 

finds the optimal solution very fast from Fig 9. 
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Fig 8. Time evolution of actuators positions under hard fault scenario 
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Fig 9. Number of iterations for convergence under hard fault scenario 
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Fig 10. Error between desired and resulting angular rates under hard fault 

scenario 
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Fig 11. Example of the speed of actuator under hard fault scenario (e.g. left 

inboard elevon) 

7 Conclusion 

In this paper, a new approach to manage the control 

surfaces of an aircraft under an actuator failure scenario has 

been developed. The main objective has been to maintain as 

much as possible the maneuverability of the aircraft 

through the actuators while limiting the structural strain 

(maximum wing bending and twisting torques) of the 

aircraft.  

This paper has shown that once the necessary aerodynamics 

forces and torques to perform a manoeuver have been 

computed by inversion of the flight dynamics, the 

contributions of each remaining actuator to the 

aerodynamic forces and torques can be optimized on-line 

by using an active set method which solves a linear 

quadratic optimization problem. Two scenarios have been 

considered, one where a soft failure occurs and one where a 

hard failure occurs, the corresponding numerical 

applications display the feasibility of the proposed 

approach.  
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