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Abstract

In real-world problems, input data may be pervaded with uncertainty. In this
paper, we investigate the behavior of naive possibilistic classifiers, as a counter-
part to naive Bayesian ones, for dealing with classification tasks in presence of
uncertainty. For this purpose, we extend possibilistic classifiers, which have been
recently adapted to numerical data, in order to cope with uncertainty in data
representation. Here the possibility distributions that are used are supposed
to encode the family of Gaussian probabilistic distributions that are compat-
ible with the considered data set. We consider two types of uncertainty: i)
the uncertainty associated with the class in the training set, which is modeled
by a possibility distribution over class labels, and ii) the imprecision pervading
attribute values in the testing set represented under the form of intervals for
continuous data. Moreover, the approach takes into account the uncertainty
about the estimation of the Gaussian distribution parameters due to the lim-
ited amount of data available. We first adapt the possibilistic classification
model, previously proposed for the certain case, in order to accommodate the
uncertainty about class labels. Then, we propose an algorithm based on the
extension principle to deal with imprecise attribute values. The experiments
reported show the interest of possibilistic classifiers for handling uncertainty
in data. In particular, the probability-to-possibility transform-based classifier
shows a robust behavior when dealing with imperfect data.
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1. Introduction

Uncertain or imprecise data may be encountered for instance when sensors
are not fully reliable or when experts are not fully sure about the right class.
Since standard classification techniques are not suitable to cope with imperfec-
tion in data, a common way to deal with this situation is to ignore such data.
This then leads to a loss of information and the models obtained are not a
faithful representation of reality.

Possibility theory [27] [23] has been recently proposed as a counterpart of
probability theory to deal with classification tasks in presence of uncertainty.
The study of naive possibilistic classifiers is motivated by the simplicity and the
acceptable performances of Naive Bayesian Classifiers (NBC for short) and by
the ability of possibility theory [27] to handle poor data. In spite of the fact that
possibility distributions are useful for representing imperfect knowledge, there
have been only few works that use possibility theory for classification [5] and
most of existing Naive Possibilistic Classifiers deal with categorical attributes
only.

For this reason, we study Naive Possibilistic Classifiers (NPC for short)
that are based on the possibilistic counterpart of the Bayesian formula [28] and
the estimation of possibility distributions from numerical data. Given a new
piece of data to classify, a possibilistic classifier estimates its plausibility of
belonging to each class (according to the training set of examples), and assigns
the class having the highest plausibility value. In order to do that, we have
to build a possibility distribution from data. Even if we assume that the data
follow a Gaussian probabilistic distribution, its parameters are estimated from
a limited sample set, and are then necessarily pervaded with imprecision. In
this scope, we consider the possibility distribution that encodes all the Gaussian
distributions for which the parameters are in a chosen confidence interval. Then,
we extend the method in order to cope with the uncertainty in data sets. In other
words, two types of uncertainty are taken into account: the uncertainty in the
description of the data (both for the classes in the training set and the attribute
values in the testing set), and the uncertainty due to the limited amount of
data.

This work is a fully revised and an extended version of a conference paper
[12]. While this latter paper extends the possibilistic classifiers proposed in
[10] to handle uncertainty in data, this work also investigates a new way of
building a possibility distribution as the representation of a family of probability
distributions. This allows us to define two new possibilistic classifiers, called here
NPC-2 and FNPC-2 for a flexible counterpart of the previous one. Moreover,
the experimental part relies on a larger number of benchmarks with perfect as
well as imperfect data.

The paper is structured as follows. Section 2 reviews some related works. In
Section 3, we restate and motivate the idea of a possibilistic classifier. Section
4 introduces the method for computing possibilistic distributions that upper
bound a family of Gaussian distributions. In Section 5, we extend possibilistic
classifiers to the handling of uncertainty in the description of data: first for
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the processing of uncertain classes in the training set, and then for dealing
with imprecise attribute values modeled by intervals, in the testing set. The
experimentation results are given in Section 6. The experiments reported show
the interest of possibilistic classifiers to deal with perfect and imperfect data.
Finally, Section 7 concludes and suggests some directions for future research.

2. Related Works

Some approaches have already proposed the use of a possibilistic data rep-
resentation in classification methods that are based on decision trees, Bayesian-
like, or case-based approaches. A general discussion about the appropriateness
of fuzzy set methods in machine learning can be found in [39]. Most of the
works in possibilistic classification are motivated by the handling of imprecision
and uncertainty about attribute values or classes. Some assume that there is a
partial ignorance about class values. This ignorance, modeled through possibil-
ity distributions, reflects the expert knowledge about the possible class of each
training instance.

In general, the approaches deal with discrete attribute values only and are
not appropriate for numerical attributes (and thus require a preliminary dis-
cretization phase for handling such attribute values). By contrast, the work
reported here presents a new type of classification method suitable for clas-
sifying data pervaded with uncertainty. Our approach can handle numerical
attributes, which can be imprecise in the testing set, and uncertain classes. It
also takes into account the amount of data available. All these forms of uncer-
tainty are represented in the possibility theory setting.

We now provide a brief survey of the literature on possibilistic classifica-
tion. We start with approaches based on decision trees, before a more detailed
discussion on Bayesian classifiers applied to possibilistic data.

Denoeux and Zouhal [55] use possibility theory to model and deal with un-
certain labels in the training set. To do this, the authors assign a possibility
degree to each possible class label which reflects the possibility that the given
instance belongs to this class. Besides, Ben Amor et al.[3] have developed a
qualitative approach based on decision trees for classifying examples having
uncertain attribute values. Uncertainty on attribute values is represented by
means of possibility distributions given by an expert. In [40], possibilistic deci-
sion trees are induced from instances associated with categorical attributes and
vaguely specified classes. Uncertainty, modeled through possibility theory, con-
cerns only the class attribute whereas other predictive attributes are supposed
to be certainly known. The authors developed three approaches for possibilistic
decision trees. The first one, using possibility distributions at each step of the
tree construction, is based on a measure of non-specificity in possibility theory
in order to define an attribute selection measure. The two remaining approaches
make use of the notion of similarity between possibility distributions for extend-
ing the C4.5 algorithm in order to support data uncertainty.
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A naive Bayesian-like possibilistic classifier has been proposed by Borgelt et
al.[8] to deal with imprecise training sets. For this classifier, imprecision con-
cerns only attribute values of instances (the class attribute and the testing set
are supposed to be perfect). Given the class attribute, possibility distributions
for attributes are estimated from the computation of the maximum-based pro-
jection [9] over the set of precise instances which contains both the target value
of the considered attribute and the class.

A naive possibilistic network classifier proposed by Haouari et al. [37],
presents a procedure that deals with training datasets with imperfect attributes
and classes, and a procedure for classifying unseen examples which may have
imperfect attribute values. This imperfection is modeled through a possibility
distribution given by an expert who expresses his partial ignorance, due to a lack
of prior knowledge. There are some similarities between our proposed approach
and the one by [37]. In particular, they are both based on the idea stating that
an attribute value is all the more possible if there is an example, in the training
set, with the same attribute value in the discrete case, or a very close attribute
value in terms of similarity in the numerical case. However, the approach in
[37] does not require any conditional distribution over attributes to be defined
in the certain case, whereas a preliminary requirement in our approach, is to
estimate such a possibility distribution for numerical data in the certain case.

Benferhat and Tabia [5] propose an efficient algorithm for revising, using
Jeffrey’s rule, possibilistic knowledge encoded by a naive product-based possi-
bilistic network classifier on the basis of uncertain inputs. The main advantage
of the proposed algorithm is its capability to process the classification task in
polynomial time with respect to the number of attributes.

In [51], the authors propose a new Bayesian classifier for uncertain categor-
ical or continuous data by integrating uncertainty in the Bayesian theorem and
propose a new parameter estimation method. An attempt to treat uncertainty
in continuous data is proposed in [52], where authors developed a classifica-
tion algorithm able to generate rules from uncertain continuous data. For the
two works [52], [51], uncertainty over continuous attribute values is represented
by means of intervals. This imprecision is handled by a regular probabilistic
approach.

Besides, some case-based classification techniques, which make use of possi-
bility theory and fuzzy sets, are also proposed in the literature. We can partic-
ularly mention the possibilistic instance-based learning approach [38]. In this
work, the author proposes a possibilistic version of the classical instance-based
learning paradigm using similarity measures. Interestingly, this approach sup-
ports classification and function approximation at the same time. Indeed, the
method is based on a general possibilistic extrapolation principle that amounts
to state that the more similar to a known example the case to be classified is,
the more plausible the case and the example belong to the same class. This idea
is further refined in [38] by evaluating this plausibility by means of an interval
whose lower bound reflects the “guaranteed” possibility of the class, and the
upper bound the extent to which this class is not impossible. In a more re-
cent work [6], the authors develop a bipolar possibilistic method for case-based
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learning and prediction.
This possibilistic instance-based learning approach may look similar to the

proximity-based classifiers proposed in [10]. However, there are differences, al-
though both emphasize a possibilistic view of classification based on similarity.
In [38] a conditional possibility of a class given the case description is defined di-
rectly, taking into account all the attributes together. In the methods presented
in [10], we rather start by defining the plausibility of a particular attribute
value for a given class (on a similarity basis), and then apply a Bayesian-like
machinery for obtaining the classification result.

3. General setting of possibilistic classification

We first recall some basics of possibility theory and then present the pos-
sibilistic classification viewed as a possibilistic version of the Bayes rule. In
the following we also motivate the potential interest of possibility theory in
classification.

3.1. Basic notions of possibility theory

Possibility theory [57, 23, 27] handles epistemic uncertainty in a qualitative
or quantitative way. In particular, possibility theory is suitable for the repre-
sentation of imprecise information.

Possibility theory is based on possibility distributions. Given a universe
of discourse Ω = {ω1, ω2, ..., ωn}, a possibility distribution π is a function that
associates to each element ωi in the universe of discourse Ω a value in a bounded
and linearly ordered valuation set (L,<). This value is called a possibility
degree. This scale may be quantitative, or qualitative when only the ordering
between the degrees makes sense. In this paper, possibility degrees have a
quantitative reading and L is taken as the unit interval [0,1]. A possibility
distribution is used as an elastic constraint that restricts the more or less possible
values of a single-valued variable.

Possibility distributions have two types of quantitative interpretations. The
first one, that is related to fuzzy set theory, is the representation of gradual
properties. For instance, linguistic expressions such that “long”, “old” or “ex-
pensive” do not refer to a specific value, but to a set of possible values in a
given context. For instance, a possibility distribution over prices may reflect
the information that an house in a particular area is “expensive”. In such a
case, each price will be associated with a possibility degree which quantifies
how much this price is typical with respect to the concept “expensive”. When
assigned to events, possibility degrees represent the plausibility that the events
will occur. However, a possibility distribution may then also be viewed as rep-
resenting a family of probability distributions, as we are going to see (see [21]
for an introduction to this use).

By convention, π(ωi) = 1 means that it is fully possible that ωi is the value
of the variable. Note that distinct values ωi, ωj may be such that π(ωi) =
1 = π(ωj). Besides, π(ωi) = 0 means that ωi is impossible as the value of
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the variable. Thanks to the use of the interval [0,1], intermediary degrees of
possibility can be assessed, which enables us to acknowledge that some values
are more possible than others.

In possibility theory, different important particular cases of knowledge situ-
ation can be represented:

• Complete knowledge: ∃ωi, π(ωi) = 1 and ∀ωi 6= ωj , π(ωj) = 0.

• Partial ignorance: ∀ωi ∈ A ⊆ Ω, π(ωi) = 1, ∀ωi /∈ A, π(ωi) = 0 (when A
is not a singleton).

• Total ignorance: ∀ωi ∈ Ω, π(ωi) = 1 (all values in Ω are possible).

A possibility distribution π on Ω enables events to be qualified in terms
of their plausibility and their certainty, by means of two dual possibility and
necessity measures that are respectively defined for an event A ⊆ 2Ω by the
formulas:

Π(A) = maxω∈Aπ(ω)

N(A) = minω/∈A(1− π(ω)) = 1−Π(A)

The possibility measure Π(A) evaluates to which extent A is consistent with
our knowledge represented by π. Indeed, the evaluation provided by Π(A)
corresponds to a degree of non-emptiness of the intersection of the classical
subset A with the fuzzy set having π as membership function. Moreover, N(A)
evaluates to which extent A is certainly implied by our knowledge, since it is a
degree of inclusion of the fuzzy set corresponding to π into the subset A.

Quantitative possibility distributions can represent, or more generally ap-
proximate, a family of probability measures [25]. Indeed, a possibility measure
Π can be viewed as an upper bound of a probability measure, and associated
with the family of probability measures defined by

P(Π) = {P s. t. ∀A,Π(A) ≥ P (A)}.

Thanks to the duality between Π and N and the auto-duality of P (P (A) =
1− P (A)), it is clear that

∀P ∈ P(Π), ∀A,Π(A) ≥ P (A) ≥ N(A).

This is the starting point for defining a probability-possibility transform. The
width of the gap between N(A) and Π(A) evaluates the amount of ignorance
about P (A), since it corresponds to the interval containing the imprecisely
known probability. Thus, possibility distributions can in particular represent
precise or imprecise information (representable by classical subsets) as well
as complete ignorance. The possibilistic representation of complete ignorance
should not be confused with a uniform probability distribution. Indeed, with

6



the above representation, we have Π(A) = 1 for any non empty event A, and
N(A) = 0 for any event A different from Ω, while a uniform probability distri-
bution on a universe with more than two elements associates non trivial events
with a probability degree strictly between 0 and 1, which sounds paradoxical
for a situation of complete ignorance. Possibility theory is particularly suited
for representing situations of partial or complete ignorance (see [21], [29] for
detailed comparative discussions between probability and possibility).

3.2. Conditional Possibility and Possibilistic Bayesian Rule

Conditioning in possibility theory is defined through a counterpart of Bayes
rule, namely

Π(A ∩B) = Π(A|B) ∗Π(B)

It is has been shown that there are only two basic choices for ∗, either
minimum or the product [24]. The min operator is suitable in the qualitative
possibility theory setting, while the product should be used in quantitative
possibility theory [16]. Quantitative possibilistic conditioning can be viewed as
a particular case of Dempster’s rule of conditioning since possibility measures
are special cases of plausibility functions [54].

Thus, possibilistic conditioning corresponds to revising an initial possibility
distribution π, when a new information B ⊆ Ω becomes available. In the
quantitative setting we have:

π(a | B) =

{

π(a)
Π(B) if a ∈ B

0 otherwise.

3.3. Naive Bayesian Possibilistic Classification

The idea of applying possibility theory to classification parallels the use of
probabilities in Bayesian classifiers (see the Appendix for a reminder). Proba-
bility distributions used in NBCs are usually built by assuming that numerical
attributes are normally distributed around their mean. Even if a normal distri-
bution is appropriate, identifying it exactly from a sample of data is especially
questionable when data are poor. Gaussian kernels can be used for approxi-
mating any type of distributions which sounds more reasonable when normality
assumptions are violated. Then, it is required to assess many parameters, a
task that may be not compatible with poor data. The problem of the precise
estimation of probability distributions for NBCs is important for the exact com-
putation of the probability distribution over the classes. However, due to the
use of the product for combining probability values (which are often small), the
errors on probability estimations may have a significant effect on the final esti-
mation. This contrasts with possibility distributions which are less sensitive to
imprecise estimation for several reasons. Indeed, a possibility distribution may
be viewed as representing a family of probability distributions corresponding to
imprecise probabilities, which is more faithful in case of poor data. Moreover,
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we no longer need to assume a particular shape of probability distribution in
this possibilistic approximation process.

In the spirit of Bayesian classification, possibilistic classification is based on
the possibilistic version of the Bayes theorem. Given a new vector {a1, ..., aM}
of n observed variables A1, ..., AM and the set of classes C = {c1, ..., cC}, the
classification problem consists in estimating a possibility distribution on classes
and in choosing the class with the highest possibility for the vector X in this
quantitative setting, i.e.:

π(cj |a1, ..., aM ) =
π(cj) ∗ π(a1, ..., aM |cj)

π(a1, ..., aM )
(1)

In formula (1), the quantitative component of possibilistic classification in-
volves a prior possibility distribution over the classes and a prior possibility dis-
tribution associated with the input variables. Note that the term π(a1, ..., aM ) is
a normalization factor and it is the same over all class values. In case we assume
that there is no a priori knowledge about classes and the input vector to clas-
sify, we have π(cj) = 1 and π(a1, ..., aM ) = 1. Moreover, analogously to naive
Bayesian classification, naive possibilistic classification makes an independence
hypothesis about the variables Ai in the context of classes [4].

Assuming attribute independence, the plausibility of each class for a given
instance is computed as:

π(cj |a1, ..., aM ) =
π(cj) ∗

∏M
i=1 π(ai|cj)

π(a1, ..., aM )
(2)

where conditional possibilities Π(ai|cj) in formula (2) represent to which extent
ai is a possible value for the attribute Ai in the presence of the class cj . As in
the case of the conditioning rule, ∗ (and

∏

by extension) may be chosen as the
min or the product operator (min corresponds to complete logical independence,
while the use of the product makes partially possible values jointly less possible).
Note that if we assume that there is no prior knowledge about classes, the term
π(cj) can be omitted. In a product-based setting, a given instance is assigned
to the most plausible class c∗:

c∗ = argmax
cj

(π(cj) ∗
M
∏

i=1

Π(ai|cj)) (3)

It is worth noticing that formula (2) has a set-theoretical reading. Namely,
when the possibility distributions take only the values 0 and 1, the formula (2)
amounts to express that an instance may be possibly classified in cj inasmuch
as the attribute values of this instance are compatible with this class given
the available observations. Thus, possibilistic classification may be viewed as
an intermediate between Bayesian probabilistic classification and a purely set-
based classifier (such classifiers use, for each attribute, the convex hull of the
data values as a possibility distribution for identifying classes, usually leading
to too many multiple classifications).
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4. Computing a possibility distribution as a family of Gaussian dis-
tribution from a data sample

In this section, we explain how to build a possibility distribution from a
set of data. First, we suppose that the data follow a Gaussian distribution
with unknown parameters. By taking into account the uncertainty attached
to the estimation of these parameters from a sample set, we propose to build
the possibility distribution that encodes all the Gaussian distributions that may
have generated the data with a chosen confidence level. Then, we extend this
approach to Gaussian kernels.

4.1. Probability-possibility transformation

There are several transformations for moving from the probability framework
to the possibility framework based on various principles such as consistency
(what is probable is possible) or information invariance [14, 17, 43, 26, 22].
Dubois et al. [30] suggest to use the “maximum specificity” principle which
aims at finding the most informative possibility distribution that encodes the
considered probability information. A possibility distribution π1 is more specific
than a possibility distribution π2 if and only if

∀x ∈ Ω, π1(x) ≤ π2(x).

Since a possibility distribution explicitly handles the imprecision and is also
based on an ordinal structure rather than an additive one, it has a weaker rep-
resentation power than a probability one. This kind of transformation (proba-
bility to possibility) may be desirable when we are in presence of poor source of
information, or when it is computationally harder to work with the probability
measure than with the possibility measure.

In the case where the universe of discourse is discrete (i.e. Ω = {c1, . . . , cq}),
the most specific possibility distribution π∗ given a probability distribution p
over Ω is defined by:

∀i ∈ {1, . . . , q}, π∗(ci) =
q

∑

cj |p(cj)≤p(ci)

p(cj). (4)

Example: For instance, we consider Ω = {c1, c2, c3} and p such that p(c1) =
0.5, p(c2) = 0.3 and p(c3) = 0.2. We obtain π∗(c1) = 0.5 + 0.3 + 0.2 = 1,
π∗(c2) = 0.3 + 0.2 = 0.5 and π∗(c3) = 0.2.

When the universe is continuous (i.e. Ω = R), the most specific possibility
distribution function for a unimodal probability distribution function is given
by [22]:

π∗(x) = sup{1− P (I∗β), x ∈ I∗β} (5)

where π∗ is the most specific possibility distribution given a probability distri-
bution p, I∗β is the β-confidence interval (P (I∗β) = β). Thus, if p has a finite
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Figure 1: The maximum specific possibility distribution for N (0, 1).

number of modes, π∗ is the possibility distribution for which each (1− β)-cuts
correspond to the confidence interval I∗β of p. When p is unimodal, the unique
value x such that π∗(x) = 1 is the mode of p. This possibility distribution is
the most specific one whose associated possibility measure provides an upper
bound for the considered probability measure.

Figure 1 presents the maximally specific probability-possibility transforma-
tion (in blue) of a normal distribution (in green).

4.2. Confidence region of the normal distribution parameters

Suppose that we have n observations X1, X2, · · · Xn drawn from a nor-
mal distribution with unknown mean µ and unknown variance σ2. The 1 − α
confidence region for the parameters of N (µ, σ2), contains a region in the two
dimensional space of µ and σ2 which has a probability equal to 1−α to contain
the true values of the parameters µ and σ2. Arnold and Shavelle in [2] have
compared several methods for finding such confidence regions. In their paper,
they present the method that we describe below and they call it the Mood’s
method. The idea of Mood confidence region is to take α1 and α2 such as
1−α = (1−α1)(1−α2), where 1−α is the confidence level of the found region.

Considering X = X1+···+Xn

n and S =
√

1
n−1

∑n
i=1(Xi −X)2 respectively as the

mean and the standard deviation estimated on the sample set, the confidence
region R(n,X, S) is defined by:

R(n,X, S) = {(µ, σ2) : σ2
min ≤ σ2 ≤ σ2

min, µmin ≤ µ ≤ µmax} (6)
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with

σ2
min =

n− 1

χ2
1−α2

2 ,n−1

S2

σ2
max =

n− 1

χ2
α2
2 ,n−1

S2

µmin = X − Φ1−α1
2

σ√
n

µmax = X +Φ1−α1
2

σ√
n
.

where Φq and χq,k are respectively the qth quantile of the standard normal dis-
tribution and the qth quantile of the chi square distribution with k degrees of
freedom. The authors also provide a table that indicates the optimal combina-
tion of α1 and α2 that gives the smallest possible region for a fixed confidence
level 1− α and for a fixed number of observations n.

By using the equation (6) we can find the mean and variance confidence
interval respectively [µmin, µmax],[σ

2
min, σ

2
max], associated with our confidence

region. Once we have found the confidence region, we define Θ as the family
which contains all the probability functions p in the confidence region i.e.

Θ = {p = N (µ, σ2)|(µ, σ2) ∈ R(n,X, S)}.

4.3. Possibility distribution for a family of Gaussian distributions

We have shown how to build a confidence region for the parameters of a
normal distribution (for a simplification purpose, we always take 1 − α = 0.95
for the regions in the following). Since the estimation of these parameters is
a critical issue for the naive Bayes classifier, it may be interesting to take into
account the uncertainty around the parameters of the normal distribution that
may have generated the data. In this scope, we propose to construct the most
specific possibility distribution that contains the family Θ of Gaussian distribu-
tions that have mean and variance parameters in the confidence region.
We name Λ = {π|π = Tr(p), p ∈ Θ} the set of possibility distributions obtained
by transforming each distribution in Θ (Tr(p) is the possibility transform of
a probability distribution using Formula 5). Thus, the possibility distribution
defined by

π(n,X,S)(x) = sup{π(x)|π ∈ Λ}
encodes all the family Θ. π(n,X,S) has the following definition:

π(n,X,S)(x) =







1 if x ∈ [µmin, µmax]
2 ∗ G(x, µmin, σ

2
max) if x < µmin

2 ∗ G(2 ∗ µmax − x, µmax, σ
2
max) x > µmax

(7)

where µmin, µmax and σ2
max are respectively the lower and the upper bounds of

the mean confidence interval, and the upper bound of the variance confidence
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interval associated to the confidence region found by (6). Moreover, G(x, µ, σ2)
is the cumulated distribution function of the N (µ, σ2). Possibility distributions
encoding a family of probability distributions have been successfully applied
to regression [35] where possibilistic k−NN regression consists in predicting in-
tervals rather than precise values. For a detailed discussion about encoding
probability distributions by possibility distributions, see [1, 36].

Figure 2 presents the distribution π(10,X,S) for the family of Gaussian dis-

tributions (in green) that are in the Mood region obtained from a sample of 10
pieces of data that follows the distribution N (0, 1).

Figure 2: An example of the possibility distribution obtained for the family Θ,
with a confidence level of 0.95 and a dataset with n=10.

4.4. Probability to possibility transformation-based classifiers

We apply the method presented above to naive Bayesian classifiers, where the
distributions are assumed to be normal, and then to its flexible extension FNBC
(using a combination of normal distributions). We shall call NPC-2 and FNPC-
2 the possibilistic extensions of NBC and FNBC. In the possibilistic setting, we
still assume that the probability distributions we start with are normal (or a
combination of normal distributions), but we also encode the uncertainty around
the estimations of their parameters.

In order to build NPC-2, we need to compute three types of possibility
degrees: π(ci) the possibility of a class ci, π(ai) the possibility of the attribute
value ai, and π(ai|cj) the conditional possibility of ai knowing cj . These values
are obtained as follows:

• π(ci) is obtained by computing the probability-possibility transformation
(using equation 4) of the prior probability distribution over the classes;

• π(ai) is obtained by computing (eq. 7) the possibility distribution π(N,Xi,Si)

that encodes the confidence region Ri(N,Xi, Si) for the parameters of
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the normal distributions of Ai where N is the number of examples in the
database, Xi is the means of the ai values and Si their standard deviation;

• π(ai|cj) is obtained by computing (using equation 7) the possibility dis-
tribution π(Nj ,X(i,j),S(i,j))

that encodes the confidence region for the pa-

rameters of the normal distributions of Ai (i.e. R(i,j)(Nj , X(i,j), S(i,j)) )
where Nj is the number of examples in the database that are associated
to the class cj , X(i,j) is the means of the ai values on this subset and S(i,j)

their standard deviation.

The FNPC-2 is exactly the same as the NPC-2 in all respects, except that
the method used for density estimation on continuous attributes is different.
Rather than using a single Gaussian distribution for estimating each continuous
attribute, we use a kernel density estimation as in FNBC. Kernel estimation
with Gaussian kernels looks much the same except that the estimated density
is averaged over a large set of kernels. For the FNPC-2, we use the following
expression:

π(a|cj) =
1

Nj

Nj
∑

k=1

π(Nj ,µik,σj)(a) (8)

where a is a value for the attribute Ai, k ranges over the Nj instances of the
training set in class cj and µik = aik (aik is the value of the attribute Ai for
the k-th example in the considered subset). For all distributions, the standard
deviation is estimated by

σj =
1

√

Nj

.

Besides, in this approach and for all the rest of this work, all attribute values
ai’s are normalized using

ain =
ai −min(ai)

max(ai)−min(ai)
.

5. Possibilistic distributions for imperfect numerical data

In many domains, databases are supplied with various information sources
which may be neither fully reliable nor precise. That is why, available infor-
mation is often pervaded with uncertainty and imprecision. In particular for
numerical data, many factors contribute to make them imperfect, such as the
variability of data, the use of unreliable data transmission or outdated sources,
or the measurement errors. For instance, data provided by sensor networks such
as temperature, pressure and rain measurement may be uncertain or imprecise.

In the context of classification or diagnosis problems, attributes in the train-
ing or testing sets may have uncertain numerical values. For instance, when
classifying unseen examples, only an interval for a numerical value may be given
instead of a precise value in some situations.
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Imperfection can also affect categorical data and especially the training set
labels. In fact, the framework of supervised learning which assumes precision
and full certainty does not necessarily correspond to practical situations. The
acquisition of a large volume of certain and precise labeled data may be prob-
lematic in some real domains, for cost reasons or partial lack of knowledge on the
problem to be solved. It is often the case when the data are labeled by experts.
An expert may be more comfortable in expressing uncertainty or imprecision in
this task. Indeed the precise qualification of a situation by an expert may be
difficult (e.g., in medical diagnosis, or in law application data).

Since standard classification techniques are inappropriate to deal with such
imperfect data, two solutions are commonly considered: either ignoring such
data by regarding them as unknown or incomplete, or developing suitable tools
for treating them. In the first approach information is lost and this may lead
to inaccurate classification models. On the contrary, if we adjust classification
techniques in order to be able to deal with imperfect data, the models produced
will describe the concepts more faithfully.

In this section, we extend the possibilistic classifiers previously presented
in Section 4, in order to handle uncertainty in data representation. Before
proposing solutions in order to deal with uncertainty in both the training and
the testing data sets, we state the hypotheses we use for the representation of
the uncertainty in the data sets.

5.1. Representation of uncertain training and testing data sets

The uncertain possibilistic classifier proposed in this section, is based on the
following hypothesis:

• All training instances are assumed to have perfect (certain and precise)
attribute values (as in the settings of possibilistic classifiers presented pre-
viously).

• All testing instances have imprecise attribute values modeled by intervals.

• The class of any training instance is represented through a possibility
distribution over the class values thus reflecting uncertainty on the classi-
fication.

Let us for instance consider a classification problem with 3 class labels (c1,
c2 and c3). In case of a standard training instance a with M certain and precise
numerical attributes, a unique class c1 is assigned, e.g.:

a = (a1, a2, ..., aM , c1)

In the uncertainty version of instance aU , the knowledge about the class
associated with this example is represented by means of a possibility distribution
over the different possible class labels, and then we have:

aU = (a1, a2, ..., aM , πc1 , πc2 , πc3)
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where πci is the possibility degree for the class ci. For instance, the distribution
(1, 0.3, 0.7) expresses that the expert finds the instance fully compatible with
the first class, less compatible with the third one and still less compatible with
the second one. There are some other noticeable particular cases that can also
be represented as such an uncertainly classified instance. Thus the distribution
(1, 1, 0) represents pure imprecision over the first and the second class labels
which are fully plausible whereas the third class is impossible. Besides, a dis-
tribution such as (1, 0, 0) coincides with a standard, certainly classified instance
for which only the first class is possible while the others are completely rejected.
Finally, the expert may also express his total ignorance about the instance by
choosing the distribution (1, 1, 1) according to which all class labels are fully
plausible.

Uncertainty in the testing set concerns attribute values and each instance
may include precise or imprecise attribute values. Since we are only interested
in numerical data in this framework, the proposed model allows an expert to
express his imprecise knowledge by means of an interval restricting the attribute
value. Thus, for each imprecise attribute, the observed value is supposed to be
the form of Ii = [Li, Ui] where Li and Ui are respectively the lower and the upper
bounds for the true attribute value ai such that Li < ai < Ui. For imprecise
attribute values, the degree of ignorance about the real value is related to the
relative width of the interval for this attribute.

5.2. Processing of uncertain classes in the training set

Let Tr be a training set composed of N instances involving M numerical at-
tributes. Instead of an exact class label, for each instance we assign a possibility
distribution on the different possible labels. Our problem is to estimate a possi-
bility distribution for each attribute ai given the class cj which can be the most
specific representation for uncertain numerical data. The conditional possibility
π(ai|cj) is obtained by computing (using equation 7) the possibility distribution
π(Nj ,X(i,j),S(i,j))

that encodes the confidence region R(i,j)(Nj , X(i,j), S(i,j)) for

the parameters of the normal distributions of Ai. The class of an example being
now pervaded with uncertainty, we use weighted sums for evaluating the values
Nj , X(i,j) and S(i,j). Then we have:

Nj =

N
∑

k=1

πk(cj),

X(i,j) =

∑N
k=1 πk(cj) ∗ aik

Nj

and

S(i,j) =

∑N
k=1 πk(cj) ∗ (aik −X(i,j))

2

Nj

where πk(cj) is the possibility that example k belongs to class cj . The choice
a weighted sum for Nj corresponds to the standard definition of the scalar
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cardinality of a fuzzy set [47], which leads to the other weighted sums in the
same spirit. Besides, it is noticeable that counterpart of these three expressions
can be found in the work of Côme et al [15] where the more general setting
of belief functions (that encompasses possibility theory) is used for describing
uncertain classes.

We note that the proposed model, supporting uncertainty in the class labels,
also includes the certain case where πk(cj) is 1 for the the true label and 0
otherwise.

For the FNPC-2, we extend equation (8) as follows:

π(a|cj) =
1

Nj

Nj
∑

k=1

π(Nj ,µik,σ)(a) ∗ πk(cj) (9)

with Nj computed as above and σ = 1√
N
.

5.3. Processing of imprecise attributes in the testing set

In the following we propose an algorithm for handling imprecision in at-
tribute values in the testing set. Let us consider a function F that estimates con-
ditional possibilities for attribute values in the perfect case. For each observed
attribute value xi, this function estimates π(ai|cj)(xi). When the observed value
of an attribute is no longer a fixed value in the domain of the attribute, but
rather an interval Ii, the problem amounts to estimate π(ai|cj)(Ii).

In agreement with the definition of the possibility measure of the event Ii,
Equation(9) is extended as follows :

π(Ii|cj) = sup{π(ai|cj), ai ∈ Ii} (10)

This means that π(Ii|cj) is estimated as follows :

1. Search for all attribute values ai in the training set such that ai ∈ Ii
2. Compute the possibility of attribute values ai given the class cj by equa-

tion (9)
3. Consider the highest possibility as the possibility of Ii.

6. Experiments and discussion

This section provides experimental results of possibilistic classifiers for per-
fect and imperfect numerical data. The experimental study is based on several
datasets taken from the U.C.I. repository of machine learning databases [49].
A brief description of these datasets is given in Table 1. Since we have chosen
to deal only with numerical attributes in this study, all these datasets have nu-
merical attribute values. For each dataset, we used a ten-fold cross validation
to evaluate the generalization accuracy of classifiers.

The experimental study is divided in two parts. First, we evaluate the NPC-
2 and FNPC-2 methods and compare our results to those of a classical NBC
[42] and FNBC [42]. Second, we test the efficiency of the proposed possibilistic
classifiers to support uncertainty related to the classes or attributes.
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Table 1: Description of datasets

Database Data Attributes Classes

Iris 150 4 3

W. B. Cancer 699 8 2

Wine 178 13 3

Diabetes 768 7 2

Magic gamma telescope 1074 10 2

Transfusion 748 4 2

Satellite Image 1090 37 6

Segment 1500 20 7

Yeast 1484 9 10

Ecoli 336 8 8

Glass 214 10 7

Iosophere 351 35 2

Block 5473 10 5

German 1000 25 2

Heart 270 14 2

6.1. Experiments of possibilistic classifiers for the perfect numerical data

This section provides experimental results with classical (non-uncertain)
databases for possibilistic classifiers that have been previously introduced. In
order to evaluate the accuracy of each classifier, we have used the standard
Percent of Correct Classification (PCC) defined as follows:

Pcc =
number of well classified instances

total number of classified instances
∗ 100 (11)

Table 2 shows the classification performance obtained with NPC-2, NBC,
FNPC-2 and FNBC for the fifteen mentioned datasets. Let us point out that:
• A normality test (test of Shapiro-Wilk) performed on these databases shows
that they contain attributes that are not normally distributed [10]. The NBC
seems to partially fail when classifying instances in datasets with attributes that
strongly violate the normality assumption.
• We expect that, if the normality assumption is strongly confirmed for a given
dataset, it is better to use a probability distribution for classification since
it remains more precise. In the other case, we may suppose that applying a
probability-possibility transformation on the NBC (which leads to NPC [10]
or to NPC-2) enables the classifier to be less sensitive to normality violation.
As suggested in Section 2, one may also think that when normality assump-
tion is not supported by the data, especially for datasets with a high number
of attributes, the NBC reinforces the error rate (by the use of multiplication),
making the NPC-2 more efficient in this case.
• As previously observed in [42], the FNBC is overall better than classical
NBC. In fact, FNBC is more accurate than the NBC in 9 of the 15 datasets and
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Table 2: Experimental results for perfect data given as the mean and the standard deviation
of 10 cross-validations

NPC-2 NBC FNPC-2 FNBC SVM

Iris 95.33±4.27 95.33±5.21 95.33±5.21 95.33±5.54 96

Cancer 95.46±2.02 96.19±0.97 97.66±0.72 97.66±0.72 97.07

Wine 95.48±4.18 97.15±2.86 97.78±2.72 96.6±3.73 98.31

Diabetes 72.91±5.51 75.52±2.67 76.17±3.58 75.64±3.56 77.34

Magic 59.32±6.33 65.93±2.91 73.0±2.49 72.26±2.39 76.90

Transfusion 74.36±6.32 75.02±5.56 76.76±5.73 75.7±6.19 76.20

Sat. Image 90.46±3.98 90.83±3.58 91.28±3.16 90.55±3.15 94.22

Segment 74.46±3.44 80.87±2.37 91.13±2.73 88.6±3.48 91.93

Yeast 57.68±3.36 46.97±4.69 58.36±2.14 52.9±3.73 57.07

Ecoli 83.08±5.47 81.27±5.16 85.8±5.6 75.82±7.1 84.22

Glass 46.32±14.79 43.12±8.12 67.38±9.86 57.97±8.98 57.47

Iosophere 60.95±9.1 70.09±6.15 92.62±5.05 92.05±5.0 88.60

Block 88.49±1.86 89.66±3.22 93.51±1.07 90.21±2.14 92.92

German 73.2±2.99 73.0±2.97 75.7±2.93 70.0±4.22 76.40

Heart 84.45±4.32 83.34±5.56 83.7±5.79 84.08±6.15 84.07

less accurate in 3 datasets and not significantly different in three cases (“Iris”,
“Diabetes” and “Satellite Image”).
• For the four classifiers (NPC-2, NBC, FNPC-2 and FNBC), classification
results of the FNPC-2 are better than the three other classifiers for all datasets
except in the case of “Iris”, “Cancer” and “Heart” databases where FNPC-2
has almost the same accuracy as others.
• If we compare results for the two flexible classifiers (FNPC-2 and FNBC),
we note that the FNPC-2 performs better for a majority of datasets. For this
classifier, the greatest increase in accuracy compared to the FNBC occurs for
databases “Yeast”, “Glass”, “Ecoli”, “Segment”, “German” and “Block” (Table
2). In Table 1, we note that the number of attributes for these databases ranges
from 8 to 25, and the number of classes from 5 to 10, except the “German”
which has only 2 classes. The FNPC-2 classifier is significantly more efficient
than FNBC one (and also than NPC-2 and NBC) for datasets with a high
number of attributes and classes.
• To compare the four classifiers in terms of PCC, we use the Wilcoxon Matched-
Pairs Signed-Ranks Test as proposed by Demsar [18]. It is a non-parametric
alternative to the paired t-test that enables us to compare two classifiers over
multiple data sets. Comparison results given in Table 3 show that the FNPC-2
is always significantly better (p − value < 0.05) than the three other classi-
fiers for all data sets whereas the two näıve classifiers (NPC-2 and NBC) have
competitive performance. These results confirm those reported in [11].

In Table 2, we also report classification accuracy of the SVM classifier for
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the fifteen datasets. The reported results are obtained by applying the WEKA
software [56] implementation of the support vector classifier (the SMO class).

If we compare results for the FNPC-2 and the SVM classifiers, we note that
the FNPC-2 is more accurate than the SVM in 7 datasets and less accurate in
the remaining. In particular, the SVM is significantly better in the dataset “Di-
abetes”, “Magic” and “Sat. Image”. However the FNPC-2 is significantly more
efficient for the datasets “Glass”, “Ecoli”, “Iosophere”, “Yeast” and “Block”.
As we have already noticed, possibilistic classifiers seem to perform well for
datasets with large dimension (if compared to Bayesian classifiers or SVM).

Table 3: Results for the Wilcoxon Matched-Pairs Signed-Ranks Test

FNPC-2 Vs NPC-2 FNPC-2 Vs NBC FNPC-2 Vs FNBC NPC-2 Vs NBC

p ≤ 0.001 p ≤ 0.0006 p ≤ 0.0035 p ≤ 0.376

6.2. Experiments of possibilistic classifiers for the imperfect numerical data

Even if uncertainty in databases may be regarded as an important issue in
machine learning, there are no uncertain nor imprecise data sets which could
be used for testing algorithms dealing with such type of data. For this reason,
we first give here a heuristics to introduce uncertainty and imprecision in an
artificial manner. In the second part of this section we present the criteria
suitable for evaluating the classification accuracy of the FNPC-2 in the imperfect
case. Finally, we give results for this case.

6.2.1. Generation of imperfect data

Data sets described in Table 1 are initially perfect with certain and precise
attributes and classes. In order to evaluate the FNPC-2 in the imperfect case,
we have artificially introduced imperfection in these data sets by transforming
the original precise and certain instances into imperfect ones.

Creating possibilistic labels: Uncertainty on the training set is created by replac-
ing the certain class label of each instance by a possibility distribution over class
labels. To generate a possibility distribution, we are going to simulate the fact
that we have two experts and that they are, to some extent, unable to classify
each training instance in a certain manner. So, each expert gives a possibility
distribution over class labels reflecting his knowledge about this uncertain situ-
ation. Then we apply an information fusion procedure [28] to produce the final
possibility distribution for each instance. In practice, each expert will simply be
a possibilistic classifier trained on the perfect (certain and precise) data set. In
this experiment we have used the FNPC and FuHC classifiers [10] to simulate
two experts. For information fusion, we apply a disjunctive operator [28] to
create the final possibility distribution πatr

:
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∀ω ∈ Ω, π∨(ω) = ⊕i=1,...,nπi(ω) =
n

max
i=1

πi(ω) (12)

We prefer to use here the disjunctive operator to the conjunctive one since
the two classifiers may disagree and we cannot be sure which one is the more
reliable. Moreover, possibilistic distributions generated with this operator cover
the imprecise case where more than one class may have a possibility degree
equal to 1. We create uncertain training set in the following way:

1. Train the FNPC and the FuHC using the original crisp training set.
2. Use the obtained possibilistic classifiers to predict the class labels for each

training instance.
3. For each training instance atr, use the two possibility distributions ob-

tained from each classifier using a disjunctive operator.
4. Keep the attribute values of each instance in the training set unchanged

and replace the crisp class label by πatr
.

Creating imprecise attributes values: Attributes in the testing set are made im-
precise in the following way. In each testing instance, we convert each attribute
value into an uncertain interval. We first compute the range for each attribute
([Xmin, Xmax]). Then we replace each attribute value x by a generated interval
I = [L, U] in order to create imprecision on this attribute. Lower bound L (resp.
upper bound U) is calculated as follows: L = x − (x − Xmin) ∗ rand1 (resp.
U = x + (Xmax − x) ∗ rand2), where rand1 (resp. rand2) denotes a random
number bounded by AttLev. AttLev is a level that refers to the width of the
interval and takes values in {0.25, 0.5, 0.75 or 1}. For each level AttLev, we
generate an uncertain dataset UAttLev where rand1 and rand2 range between
0 and AttLev. Hence, for each perfect testing set, we create four uncertain
datasets U0.25, U0.5, U0.75 and U1.

6.2.2. Classification accuracy measures

To measure the accuracy of the FNPC-2, we use two evaluation criteria:

• The percentage of Most Plausible Correct Classification (MPcc):
counts the percentage of instances whose all most plausible classes, pre-
dicted by the possibilistic classifier, are exactly the same as their initial
most plausible classes given by the possibility distribution labeling each
testing instance.

MPcc =
Number of exactly well classified instances

Total Number classified instances
∗ 100 (13)

• The Information Affinity-based Criterion: AffC [41] is a degree of
affinity between the predicted and the real possibility distribution labeling
the testing instances which ranges in [0,1]:

InfoAffC =

∑n
i=1 Aff(πreal

i , πpred
i )

Total Number classified instances
(14)
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Aff(π1, π2) = 1− d(π1, π2) + Inc(π1, π2)

2
(15)

where d(π1, π2) is the Manhattan distance between π1 and π2 and Inc(π1, π2)
= Inc(π1∧π2) is the degree of inconsistency between π1 and π2 calculated
as follows:

Inc(π) = 1−max
ω∈Ω

{π(ω)}

6.2.3. Results for the imperfect numerical data

This experimental study is divided in two parts. First, we evaluate the
uncertain FNPC-2 to handle uncertainty only in class attribute and we keep
attributes in the untouched testing set. Second, we test the accuracy of the pro-
posed classifier when attributes in the testing set are uncertain whereas training
set is kept untouched. We choose to test each uncertainty type independently
in order to check the efficiency of the FNPC-2 to deal with each situation.

6.2.4. Uncertainty type 1: Uncertain classes

Table 4: Experimental results for uncertain classes given as the mean and the standard
deviation of 10 cross-validations

FNPC-2

MPcc AffC

Iris 94.0±3.6 0.94±0.01

Cancer 96.19±1.8 0.98±0.0

Wine 92.64±6.2 0.94±0.01

Diabetes 76.85±6.4 0.96±0.0

Magic 74.4±3.7 0.93±0.0

Transfusion 83.57±4.2 0.98±0.0

Sat. Image 90.55±3.1 0.98±0.01

Segment 70.93±5.1 0.92±0.01

Yeast 58.28±3.6 0.96±0.0

Ecoli 80.36±8.2 0.93±0.01

Glass 52.54±13.3 0.92±0.02

Iosophere 78.63±6.9 0.94±0.02

Block 78.69± 1.07 0.94±0.0

German 81.2±3.9 0.96±0.01

Heart 89.26±6.5 0.96±0.01

Table 4 shows the classification performance (MPcc and InfoAffC criterion)
obtained with the FNPC-2 for the 15 uncertain data sets.

If we analyze results in Table 4, we note that:
• As reported in the perfect case from these results we can say that, overall
the FNPC-2 shows a high ability to detect the most plausible classes even for
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uncertain datasets with high level of uncertainty (all training instances are un-
certain).
• By analyzing the InfoAffC criteria we can see that the values are very high for
the uncertain FNPC-2 and for all data sets (the InfoAffC is > 0.9). From these
results, we can conclude that the proposed classifier is able to predict faithful
possibility distributions.
• For the majority of data sets, the InfoAffC criteria confirms the results re-
ported by the MPcc. However we can see a significant divergence between the
values of InfoAffC and MPcc for some data sets (for example for the Segment,
Glass, Iosophere and Block there is a significant decrease in MPcc, if compared
to the perfect case which is respectively about 20 %, 15%, 13% and 15% however
the InfoAffC remains higher than 0.9). This divergence means that for many
testing instances, the FNPC-2 provides possibility degrees close to the initial
possibility distribution (high values of InfoAffC) but the predicted and real full
plausible classes are not exactly the same (low values of MPcc). So we can say
that this decrease in accuracy for these datasets due to the rigid nature of the
MPcc criteria which causes the absence of classification for many instances in
the data set where the classifier provides more than one fully plausible class
which are not exactly the same as those given in the real distribution. This
mainly happens for datasets having a large number of classes.

6.2.5. Uncertainty type 2: Imprecise attributes

Table 5 shows the MPcc and the InfoAffC results obtained with the FNPC-2
for each imprecision level on attributes and for the fifteen mentioned data sets.
By comparing the classification performance on each imprecision level we see
that accuracy decreases when the imprecision level of attributes increases (when
intervals become broader). Despite this decrease we note that:
• As in the uncertainty type 1 case (Table 4), the FNPC-2 has reported relatively
good performance if compared to the perfect case. We can also remark that the
decrease of accuracy is relatively smooth.
• Despite the decrease in accuracy, we note it remains acceptable in average.
For instance, if we analyze results in Table 5, we remark that the MPcc remains
higher than 60% for the highest uncertainty level (U1)(the worst case) and this
for all data sets except the “Yeast” and “Glass” where the values are respectively
about 31% and 43%. The low results reported for these two data sets are not
specifically due to to the FNPC-2 since the MPcc reported for the original
version for the certain case of these data sets is only about 58% for the Yeast
and 67% for the Glass for FNPC-2.
• The values of the InfoAffC criterion reported for the FNPC-2 and for the
different data sets are relatively good. For 9 of fifteen datasets, this value
remains higher than 0.8 (for all uncertainty levels) and it is higher than 0.7 for
the remaining data sets. Thus, we can conclude that the predicted and initial
possibility distributions are relatively consistent.

From results given in Tables 4 and 5, FNPC-2 appears to be accurate and
can be considered as a competitive classifier which is well suited for dealing with
perfect or imperfect continuous data.
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Table 5: Experimental results for uncertain attributes given as the mean and the standard
deviation of 10 cross-validations

U0.25 U0.5 U0.75 U1

MPcc AffC MPcc AffC MPcc AffC MPcc AffC

Iris 93.33±8.9 0.95±0.05 90.67±10.0 0.94±0.06 88.0±11.9 0.92±0.05 86.67±9.4 0.9±0.04

Cancer 97.66±1.5 0.98±0.02 96.04±2.5 0.96±0.02 95.9±2.3 0.96±0.02 94.28±2.6 0.94±0.02

Wine 95.48±3.4 0.97±0.02 94.93±3.9 0.96±0.03 91.6±3.7 0.94±0.02 85.9±5.3 0.9±0.04

Diabetes 73.17±3.6 0.77±0.02 69.52±4.5 0.75±0.03 68.35±4.8 0.74±0.04 66.0±4.2 0.72±0.02

Magic 73.29±4.2 0.78±0.02 72.46±3.2 0.78±0.02 72.26±3.1 0.77±0.02 70.77±3.9 0.76±0.02

Transfusion 65.41±7.9 0.73±0.04 63.82±7.1 0.73±0.04 63.02±7.5 0.72±0.03 60.86±5.4 0.72±0.03

Sat. Image 89.27±2.1 0.93±0.01 86.15±3.2 0.91±0.02 85.78±2.6 0.91±0.02 84.4±3.5 0.9±0.02

Segment 87.93±2.3 0.93±0.01 83.13±3.6 0.91±0.02 77.8±3.2 0.89±0.02 73.4±3.6 0.86±0.02

Yeast 53.71±2.8 0.79±0.02 49.33±4.7 0.77±0.01 40.51±3.1 0.74±0.02 31.2±3.0 0.7±0.01

Ecoli 81.27±5.3 0.91±0.03 77.19±9.9 0.9±0.04 70.28±10.5 0.86±0.03 63.65±6.5 0.83±0.02

Glass 49.56±12.57 0.78±0.03 47.43±15.5 0.78±0.04 45.34±12.05 0.76±0.04 43.62±14.33 0.76±0.05

Iosophere 91.16±2.0 0.92±0.02 90.3±3.4 0.91±0.03 89.74±4.3 0.91±0.04 86.9±5.4 0.88±0.04

Block 89.2±1.7 0.93±0.01 86.86±2.2 0.91±0.01 81.2±2.0 0.87±0.01 75.9±3.0 0.84±0.01

German 71.5±4.2 0.76±0.02 71.8±4.3 0.76±0.02 69.4±3.2 0.75±0.02 69.2±3.4 0.74±0.03

Heart 84.08±4.7 0.85±0.04 81.85±5.8 0.84±0.04 81.85±6.5 0.84±0.05 81.48±7.0 0.84±0.05

7. Conclusion

Imperfection in databases, including imprecision and uncertainty, is gaining
more attention since decision system may have to deal with such a kind of infor-
mation. Most of possibilistic classifiers [37] [40] that have been proposed with
this concern are only suitable for discrete attributes. This work has investigated
a possibilistic classification paradigm that may be viewed as a counterpart of
Bayesian classification and that applies to continuous attribute domains. Then
an important issue is the estimation of possibilistic distributions from numerical
data, without discretization. For this purpose, we have proposed and tested the
performance of two possibilistic classifiers which are variants of those previously
proposed in [10] and [12], called the NPC-2 and the FNPC-2.

For these classifiers, we have used a probability-possibility transformation
method enabling us to derive a possibilistic distribution as a family of Gaussian
distributions. First, we have applied the transformation method to move from
a classical probabilistic NBC to NPC-2, which takes into account the confidence
intervals of the Gaussian distributions by considering the amount of data avail-
able for estimating the parameters of the distributions. Then, we have tested
the feasibility of a Flexible Naive Possibilistic Classifier (FNPC-2), which is the
possibilistic counterpart of the Flexible Naive Bayesian Classifier. The FNPC-2
estimates possibilistic distributions in a non-parametric way by applying the
transformation method to kernel densities instead of Gaussian ones. The ratio-
nale behind this classifier is that kernel densities are less sensible than Gaussian
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ones to normality violation.
The second interest of this paper is to extend the proposed possibilistic

classifier for handling uncertainty in data sets. Two types of uncertainty are
considered: i) uncertainty related to class attribute in the training set modeled
through possibility distributions over class labels, and ii) uncertainty related to
attribute values in the testing set represented by intervals for continuous data.
For the first type of uncertainty, we have adapted the possibilistic classifica-
tion model suitable for the certain case, to support uncertainty in class labels.
We have also proposed an algorithm based on the extension principle to deal
with the imprecision of attribute values. The algorithm estimates possibility
distributions for an interval-valued attribute by looking for the possibility dis-
tributions associated with each attribute value in the training set belonging to
this interval.

To test possibilistic classifiers in the uncertain case, we have artificially in-
troduced imperfection in data sets from the UCI machine learning repository
[49]. Experimental results show the performance of these classifiers for handling
numerical input data. However, while the NPC-2 is less sensible than NBC to
normality violation, the FNPC-2 shows high classification accuracy and good
ability to deal with any type of data when compared to the NPC-2 and to
Bayesian classifiers. Regarding accuracy, we also show that FNPC-2 compete
with SVM in the perfect information case. Results for the imperfect data shows
the efficiency of the FNPC-2 to predict the class labels from possibility distri-
butions that are quite consistent with initial distributions.

As future work, it would be interesting to deal with uncertain attribute values
both in the training and testing sets. Estimating conditional distributions from
training set including uncertain attributes and classes at the same time is a
more tricky issue to be considered. In addition, in order to really exploit the
proposed possibilistic classifiers for uncertain data, it would be important to
test possibilistic approaches on genuine uncertain data.
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Appendix: Naive Bayesian Classifiers

Naive Bayesian Classifiers (NBC) are based on Bayes rule. They assume
the independence of the input variables. Despite their simplicity, NBC can
often outperform more sophisticated classification methods [45]. A NBC can
be seen as a Bayesian network in which predictive attributes are assumed to be
conditionally independent given the class attribute.

Given a vector X = {x1, x2, ..., xn} to be classified, a NBC computes the
posterior probability P (cj |X) for each class cj in a set of possible classes C =
(c1, c2, ..., cm), and labels the case X with the class cj that achieves the highest
posterior probability, that is:

c∗ = argmax
cj

P (cj |X) (.1)

Using the Bayes rule:

P (cj |x1, x2, ..., xn) =
P (x1, x2, ..., xn|cj) ∗ P (cj)

P (x1, x2, ..., xn)
(.2)

The denominator P (x1, x2, ..., xn) is a normalizing factor that can be ignored
when determining the maximum posterior probability of a class, as it does not
depend on the class. The key term in equation (.2) is P (x1, x2, ..., xn|cj) which
is estimated from training data. Since Naive Bayes assumes that conditional
probabilities of attributes are statistically independent we can decompose the
likelihood into a product of terms:

P (x1, x2, ..., xn|cj) =
n
∏

i=1

p(xi|cj) (.3)

Even under the independence assumption, the NBC have shown good perfor-
mance for datasets containing dependent attributes. Domingos and Pazzani [20]
explain that attribute dependency does not strongly affect the classification ac-
curacy. They also relate good performance of NBC to the zero-one loss function
which considers that a classifier is successful when the maximum probability is
assigned to the correct class (even if estimated probability is inaccurate). The
work in [58] gives a deeper explanation about the reasons for which the efficiency
of NBC is not affected by attribute dependency. The author shows that, even
if attributes are strongly dependent (if we look at each pairs of attributes), the
global dependencies among all attributes could be insignificant because depen-
dencies may cancel each other out and so they do not affect classification.

The most well-known Bayesian classification approach uses an estimation
based on a multinomial distribution over the discretized variables, and leads
to so-called multinomial classifiers. Such a classifier, which handles only dis-
crete attributes (continuous attributes must be discretized), assumes that all
attributes follow a multinomial probability distribution. A variety of multino-
mial classifiers have been proposed for handling an arbitrary number of indepen-
dent attributes. Let us mention especially [45], [46], [34], semi-naive Bayesian
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classifiers [44], [19], tree-augmented naive Bayesian classifiers [32], k-dependence
Bayesian classifiers [53], and Bayesian Network-augmented naive Bayesian clas-
sifiers [13].

A second family of NBC is suitable for continuous attribute values. They
directly estimate the true density of attributes using parametric density. A sup-
plementary common assumption made by the NBC in that case, is that within
each class the values of numeric attributes are normally distributed around
the mean, and they model each attribute through a single Gaussian distribu-
tion. Then, the NBC represent such a distribution in terms of its mean and
standard deviation and compute the probability of an observed value from such
estimates. This probability is calculated as follows:

p(xi|cj) = g(xi, µj , σj) =
1√
2Πσj

e
− (xi−µj)

2

2σ2
j (.4)

The Gaussian classifiers [33] [42] are known for their simplicity and have
a smaller complexity, compared to other non-parametric approximations. Al-
though the normality assumption may be a valuable approximation for many
benchmarks, it is not always the best estimation. Moreover, if the normality
assumption is violated, classification results of NBC may deteriorate.

Other approaches using a non-parametric estimation are those breaking with
the strong parametric assumption. The main approaches are based on the mix-
ture model [31] [48] and the Gaussian mixture models [7] [48]. Other approaches
use kernel densities [42][50], leading to so-called Flexible Classifiers. This name
is due to the ability of such classifier to represent densities with more than
one mode in contrast with simple Gaussian classifiers. Flexible classifiers rep-
resent densities of different shapes with high accuracy; however it results into a
considerable increase in complexity.

John and Langley [42] have proposed a Flexible Naive Bayesian Classifier
(FNBC) that abandons the normality assumption and instead uses nonpara-
metric kernel density estimation for each conditional distribution. The FNBC
has the same properties as those introduced for the NBC, the only difference
is instead of estimating the density for each continuous attribute x by a sin-
gle Gaussian g(x, µj , σj), this density is estimated using an averaged large set
of Gaussian kernels. To compute continuous attribute density for a specific
class j, FNBC calculates n Gaussian distributions, where each of them stores
each attribute value encountered during training for this class and then takes
the average of the n Gaussians in order to estimate p(xi|cj). More formally,
probability distribution is estimated as follows:

p(xi|cj) =
1

Nj

Nj
∑

k=1

g(xi, µik, σj) (.5)

where k ranges over the training set of attribute xi in class cj , Nj is the number
of instances belonging to the class cj . The mean µik is equal to the real value
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of attribute i of the instance k belonging to the class j, e.g. µik = xik. For each
class j, FNBC estimates this standard deviation by:

σj =
1

√

Nj

(.6)

The authors also prove kernel estimation consistency using equation (.6),
(see [42] for details). It has been shown that the kernel density estimation used
in the FNBC and applied on several datasets, enables this classifier to perform
well in datasets where the parametric assumption is violated with little cost for
datasets where it holds.

Pérez et al. [50] have recently proposed a new approach for Flexible Bayesian
classifiers based on kernel density estimation that extends the FNBC proposed
by [42] in order to handle dependent attributes and abandons the independence
assumption. In this work, three classifiers: tree-augmented naive Bays, a k-
dependence Bayesian classifier and a complete graph are adapted to the support
kernel Bayesian network paradigm.
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