
HAL Id: hal-00925197
https://enac.hal.science/hal-00925197

Submitted on 7 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

METRIX : a new tool to evaluate the quality of software
source codes

Antoine Varet, Nicolas Larrieu, Léo Sartre

To cite this version:
Antoine Varet, Nicolas Larrieu, Léo Sartre. METRIX : a new tool to evaluate the quality of software
source codes. I@A 2013, AIAA Infotech@Aerospace Conference, Aug 2013, Boston, United States. pp
xxxx, �10.2514/6.2013-4567�. �hal-00925197�

https://enac.hal.science/hal-00925197
https://hal.archives-ouvertes.fr


 

 1

METRIX: a new tool to evaluate the quality of software 

source codes 

Antoine Varet1, Nicolas Larrieu2 and Léo Sartre3 

Ecole Nationale de l’Aviation Civile, laboratoire TELECOM 

7 avenue Edouard Belin 

31055 Toulouse, France 

In this paper we will try to answer the question: how to evaluate the quality of software 

automatically produced by code generation process in the domain of aeronautical embedded 

systems? To do so, we will introduce our new Open Source tool « METRIX » capable of 

computing different software quality metrics. Each of them gives information on quality of 

both the source code and the binary software for the embedded system we want to assess. 

METRIX is able to evaluate software written in C and ADA languages. There is a specific 

module which is able to compute the most efficient line of compilation in order to minimize 

size of code or time of execution for the final binary. Lots of metrics can be considered for 

software evaluation but in this paper, we will discuss only the three most popular: Lines of 

Code (LoC), metrics of Halstead (volume of source code, complexity of the algorithm) and 

cyclomatic complexity of McCabe. 

This research may help software engineers to improve their aeronautical system 

verification and validation process and this paper will give them a complete overview of how 

METRIX software works, how it produces a quality software comparison and how it proposes 

enhanced visualization features (Kiviat and City map diagrams for instance). A specific 

aeronautical case study (secure embedded aeronautical router) will be discussed and will 

demonstrate how this new software can improve the verification and validation steps of a 

complete industrial project. 

I. Introduction 

A. Software development context for aeronautical embedded systems 

oftware development costs for aeronautical embedded systems are increasing together with their complexity. 

Thus, to decrease development costs engineers use more and more model converters to generate automatically 

embedded source codes. The time of code development is decreased but not the amount of line of code generated. 

Consequently, aeronautical engineers face a difficult question: how to ensure quality and performance of their 

system taking into account this increase in software complexity? One of the answers is to investigate software 

quality by assessing the quality of software automatically produced by code generation process. 

To do so, we will introduce our new Open Source tool « METRIX » which can compute different software quality 

metrics. Each of them gives information on quality of both the source code and the binary software produced. 

METRIX is able to evaluate software written in C and ADA languages and many metrics can be considered for 

software evaluation (the different metrics will be described in detail in the next section). 

This research may help software engineers to improve their aeronautical system verification and validation 

process and this paper will give them a complete overview on how METRIX software works, how it produces a 

quality software comparison and how it proposes enhanced visualization features (Kiviat and City map diagrams for 

instance). A specific aeronautical case study (secure embedded aeronautical router) will be discussed and will 

                                                           
1 PhD Student, SINA Department, avaret@recherche.enac.fr  
2 Assistant Professor, SINA Department, Nicolas.larrieu@enac.fr  
3 Assistant, SINA Department, Sartre@recherche.enac.fr  

S



 

 2

demonstrate how this new software can improve the verification and validation steps of a complete industrial 

project. 

B. Design methodology for software fast prototyping  

In our previous research, we introduced a new methodology to accelerate the embedded software development 

with two sets of optimization goals. The first set is the minimization of costs and delays for design, source code 

writing, certification and evaluation. The second set concerns maximization of the safety assurance level in the 

confidence of the final software. This methodology summarized in figure 1 has been extensively explained in Ref. 1.

The use of model transformers and qualified tools is an improvement for the development and the certification of 

the final product. Their use produces a formal demonstration of the benefits; and the global development process 

thus becomes more efficient. 

The methodology can be summarized as followed: 

1) During the partitioning process, the different requirements are split into logical groups. Each group is 

referred to as a partition. 

2) Then each group of requirements is modeled. 

3) The third step is to convert automatically the models into source codes with a qualified tool named 

transformer; this code is independent of both operating system and hardware constraints. 

4) During the fourth step, a piece of code is added in order to make a link between the inputs and outputs of 

the model-based generated code and the I/O provided by the operating system. This code may be manually 

written or automatically generated. 

5) Following this, all source code files are compiled into a binary form. 

6) Binary object files are then aggregated together during the integration step into one binary image per 

partition defined in the first step. 

7) This binary image may be loaded into the hardware embedded target or tested with an emulator. 

This methodology has already been successfully applied to elaborate and develop an embedded next generation 

router. We are now focusing research on new improvements in methodology.  

First of all, usage of different and new tools but also new languages may be investigated. Additional sub-steps to 

evaluate qualitatively and quantitatively the quality of source codes may also be proposed. This quality assessment 

may help, for instance, to improve the models and the methods applied to write the different models and to generate 

source files. This paper will be specifically concerned with this last issue; we will try to answer the question: how to 

assess the quality of software automatically produced by code generation process? 

 

Figure 1. Development methodology for software fast prototyping 



 

 3

C. How to assess software quality? 

When considering a model driven approach for software development, there are two levels of software 

assessment quality. The first one is model-based assessment and the second is code-based assessment. According to 

the DO-178C standard, model driven development seems to be an interesting track of investigation for future 

aeronautical system developments (see Ref. 2 for details). Nevertheless, this is still a work-in-progress area for the 

aeronautical domain. Let us cite Ref. 3 which represents a good example of model based assessment for automotive 

domain. Their approach could be considered as an interesting starting point for aeronautical embedded systems 

model assessment. 

D. State of the art of code-based quality assessment tools for software development 

Most aeronautical industrial projects are working on software code assessment. Different software is available to 

produce assessment results. Let us cite SourceMonitor4, Sonar5, McCabeIQ6, Polyspace7 or RSM8 which represent 

the most familiar set of tools for the aeronautical industry. SourceMonitor4 is an open source software with 

interesting representation choices for quality metrics, but it is a non multiplatform software and which lacks a lot of 

documentation. Sonar5 is an open and generic platform to manage code quality (used most of the time for project 

management). Consequently, Sonar5 is not really suited to our specific aeronautical embedded system development. 

References 6, 7 and 8 are industrial software with an expensive license cost. Moreover, we judged them 

insufficiently flexible for our research needs. They do not seem suitable to be integrated with the development 

methodology we introduced previously. 

Based on this analysis of software quality assessment tools we decided to develop our own code-based quality 

assessment tool. This software called “METRIX” is able to assess the quality of C and ADA languages and can 

compute different software quality metrics (each of them is defined in detail in the next section): Lines of Code 

(LoC), metrics of Halstead (volume of source code, difficulty of the algorithm...) and cyclomatic complexity of 

McCabe. Moreover, different visualization features are proposed (Kiviat or City map diagrams for instance) that can 

help improve software quality. We will explain this in the final part of this paper in which we will discuss a specific 

study case with secure embedded aeronautical router design and development. 

In the following sections of this paper, we will first introduce the different quality metrics METRIX is able to 

assess for a set of codes. Then we will present the different visualization features that can be used for such an 

assessment. And finally, we will demonstrate through a case study (the software development of an embedded 

secure router); how METRIX features may help system designers to improve the quality of the final software they 

want to produce for their real embedded target. 

II. Software quality metrics implemented in METRIX 

Numerous metrics enable developers to evaluate source code. Reference 9 enumerated more than 200 different 

metrics. Our main research objective is to assess the quality of software source codes. This is why the first class of 

metrics we selected is language dependent. This is the quickest way to assess the performance of codes.  In a second 

stage, we considered Halstead and McCabe complexity metrics, which evaluate the complexity of algorithms. Thus 

the next three subsections describe sequentially the different parameters we took into account for such an analysis. 

A. Language-dependant metrics 

Our first class of metrics regroups traditional metrics related mainly to the language the developer used to write 

his software. They allow fast assessment on the performance of a source code. 

The first one is the Lines Of Code (LoC). It counts the number of lines for the different files of the entire 

development project. This metric is probably the most commonly used, mainly because it is easy to understand and 

to compute. It provides an estimation of development time and costs for the user of this metric. But this metric has a 

major drawback: its computation may differ according to the way the developer implements this metric. For 

instance, how to perform an “#include” in language C? Does the counting program count recursively the number of 

lines in included files or count only one line for this preprocessor instruction? A similar problem exists with the Ada 

language: how to compute Ada standard package importation? 

This is why different variations have been created to deal with this issue:  Effective Lines Of Code (eLoC)10;  Logical Lines Of Code (lLoC)10;  Code readiness ratio
10;  Function length (LoC per function)11;  Number of function call

11. 



 

 4

Effective Lines Of Code (eLoC) is a refinement of the first metric (LoC). This metric excludes from the 

counting all the lines that are not associated with binary processor instruction. For instance, comment lines and 

empty lines are excluded from the counting, and also lines with just a brace (“{“ and “}”). 

The Logical Lines Of Code (lLoC) is a more restrictive metric than the Effective Lines Of Code. This metric 

counts only the number of instruction lines, excluding all declarations and all data structure lines, contrary to the 

Effective Lines Of Code metric.  

The code readiness ratio is more complex to perform. Here we count the number of lines with comments, the 

number of spaces and tabulations and we report these counts to the LoC and to the total number of characters of the 

source code. Most developers considers a lighten source code is easier to read, debug and maintain than a condensed 

and poorly commented source code.  

Function length (aka LoC per function) is a metric useful to improve the readiness of source code. The Linux 

Kernel Coding Size11 suggests making a maximum of function in order to reduce each function to one 

task/objective. However, this metric should be used in conjunction with the cyclomatic complexity, another metric 

defined later in the next section. Consequently, coding style rules imply that low complexity function may be longer 

and highly complex functions should be short, in order to maintain the product of complexity and length under a 

user-defined ceiling. The general rule for the function length is to maintain each function under 24 lines of at most 

80 characters each. Thus, the function can appear entirely on a terminal or a screen. 

The last metric we will introduce in this section is the number of function call. This metric can provide 

profiling information to guide the development team for optimizing their code. A naïve approach considers that a 

function that is called often requires optimization effort. Nevertheless, in practice, only the interpretation of the code 

and the execution of the software enable developers to identify which functions spend most of the CPU time and 

how much CPU time they spend. Some tools are dedicated to this kind of profiling, for instance Valgrind12. 

These metrics are widely used but have one main drawback: with these metrics, you can compare two 

development projects if and only if both have been written with the same language. For example, two projects based 

on the C language can be compared in terms of line of code. If one is written in Ada and the other is written in C, 

then the comparison does not provide any useful information. 

This is why in the two next sub section we introduce performance metrics related to algorithmic complexity 

(Halstead and McCabe metrics) and not only the development language used by software engineers. 

B. Halstead metrics 

Professor Maurice Halstead presented in 1977 different metrics such as the code volume or its algorithmic 

difficulty, detailed in Ref. 13. These metrics are based on items found in all textual languages of imperative 

programming. Thus, they depend little on the language. These items are the operators and the operands. The 

operators are the reserved key-words (for example «+» «*» « >> » «&» in the language C). The operands are the 

parameters of the operator; it may be numerical values, names of constants or variables, etc. The first four 

parameters defined by Halstead are: 

� n1 (the number of different operators); 

� N1 (the total number of operators in the source code); 

� n2 (the number of different operands); 

� N2 (the total number of operands in the source code). 

These four «primary metrics» are measured on the source code, per function, file or set of files. From these 

metrics, we can derive other metrics: 

� N (= N1 + N2) is the size of the program;  

� n (= n1 + n2) is the size of the dictionary; 

� V = N * log_2 (n) is Halstead’s Volume and reports the size of the implementation of the algorithm. 

Conforming to Halstead’s recommendations, V should be between 20 and 1000 for each function. V > 1000 is an 

indication that the function is too much complex and should be divided into sub-functions. 

� D = ( n1 / 2) * ( N2 / n2 ). D is Halstead’s Difficulty of the algorithm, also called error-inclination; 

� E = D * V is called Halstead’s implementation Effort; 

� T = E / 18 is Halstead’s Time estimation required for implementation (in seconds). Maurice Halstead 

defined the constant 18 by measuring the number of elementary operation per second a human brain can perform. 

All these metrics may be used to compare two source codes, and contrary to the metrics of the previous section, 

Halstead’s metrics may be used for any imperative programming language. 

 

 



 

 5

C. Cyclomatic Complexity 

The last class of metrics we will present was developed by Thomas J. 

McCabe. He introduced in Ref. 14 the cyclomatic complexity of 

algorithms, sometimes called McCabe’s metric. 

This complexity is measured by building the flowchart of the source 

code, then by counting the number of different paths of the graph. For 

example, figure 2 shows the flowchart of a function called “route_init” in 

one of our source code. There are three different paths to go from the 

initial state 2 to the final state 8. Thus, the McCabe cyclomatic 

complexity of this function is 3. 

The minimum complexity of any algorithm is 1 (there is at least one 

path from the beginning to the end of the algorithm). Each condition, 

each loop, each branch increases the cyclomatic complexity. 

The cyclomatic complexity iv(G) can be measured on each module 

of a program, enabling the developer to perform different code 

simplifications on the most complex modules. A variant of the 

cyclomatic complexity evaluates the complexity of variables, which can 

be used in order to estimate the effort to test the software. 

The essential cyclomatic complexity (eiv(G)) is another variant and 

measures only the costs of jumping, considering the conditional and 

unconditional loops have a cost of 1. Nonetheless, in language C, quality 

standards15 commonly recommend that the jumping instructions like « 

goto » are kept to a strict minimum, so the essential cyclomatic 

complexities we measured on our source codes were all eiv=1. 

We decided to avoid the implementation of other metric 

measurements in our tool METRIX, because we have evaluated the ratio benefits/cost too low to justify implementing 

them. Thus, we delayed the implementation of the metrics based on the names of the identifiers and the metrics 

requiring an abstract interpretation of the code. 

We used Perl scripts to perform the computations of metrics, helped by some Open source tools (cfg2dot16 and 

graphviz17). Another issue we worked on deals with the representation of METRIX measurements. The next section 

presents two classes of diagram we used in order to highlight the special features of source code. 

III. METRIX visualization features for source code performances 

Different diagrams enable the user to visualize numeric data. Graphics like line charts, scatter plots and 

histograms are common, thus we will not expand on them. We will present two less-common classes of diagrams: 

the radar plots, also called Kiviat diagrams, and the city map diagram, mostly used to represent the cartography of 

cities. One specific feature of METRIX is to use those two types of visualization for constructing signature and 

cartography of source codes. 

A. Kiviat diagrams 

The Kiviat diagram visualizes information through polar coordinates. The distance between the point and the 

origin is associated to the value we want to represent, while the angle between two points is constant, this constant is 

uninformative and calculated to uniformly distribute the different points. Moreover, all metric points are linked 

together, making a plain polygon, which shapes the specificity of the data we want to represent. Of course, this 

diagram is not adequate to represent only one or two metrics, it requires at least three values to be pertinent. Values 

may be of the same metrics, representing the metric measured on different parts of the source code. Values may be 

of very different metrics, computed with heterogeneous units. That enables the user to merge multivariate data on 

the same diagram. On Kiviat diagrams, values must be strictly positive. 

 

1. Functions signature usage 

In figure 3, we represent two Kiviat diagrams coding different metric values for two functions issued from one of 

our source codes. Metrics are the same on both diagrams, only the numeric values differ between them. By 

normalizing all values into the range [0, 1], metric per metric, we can obtain a polygon for each evaluated function. 

Thus, the polygon shape is specific to each function, so we named them the “signature” of the different functions 

(ComputeChecksum and GetChecksum). 

 
Figure 2. Complexity computation, 

through the rebuild algorithm 



 

 6

Each signature has its specific shape and differs visually from the signature of the other functions. For instance, 

figure 3 shows that the function ComputeChecksum contains more lines of code and is more complex than the 

function GetChecksum. The polygons have graphically different shapes. 

To compare different signatures of different functions we need to normalize their signature values with the same 

maximal values. The algorithm we have used to perform the signature diagrams is the following one: 

 

1) Extract the matrix of data: each function of the source code is associated with a row, each metric is 

associated with a column. For instance: 

 LoC eLoc (…other metrics…) M 

Function ComputeChecksum 49 24 … 2 

Function GetChecksum 10 6 … 1 

(other functions…) … … … 3 

2) Compute the diagonal matrix of inverses of maximal values 

 LoC eLoc … M 

LoC 1/49 0 … 0 

eLoc 0 1/24 … 0 

… … … … 0 

M 0 0 0 1/3 

3) Compute the product of the matrices 

 LoC eLoc … M 

Function ComputeChecksum 1 1 … 2/3

Function GetChecksum 10/49 6/24 … 1/3 

… … … … …

In this new matrix, all values are between 0 and 1, thus they can be represented on a polar diagram of radius 1. 

That enables us to merge heterogeneous variables on the same diagram. 

 

4) Represent each line of this matrix on a Kiviat diagram (see figure 4 for details). 

The different signatures enable the user to rapidly identify the “trouble spots” of the source code, for instance 

due to human error, just by seeing the area of the signatures of the different functions. Indeed, a complex function 

should have an area bigger than a simple one. In our example in figure 4, we can see that the function 

ComputeChecksum is more complex than the function GetChecksum. This does not mean that this function has 

more bugs, but this is an indication that more effort should be put into to verifying and validating this function. 

 

 
Figure 3. Signatures of the functions ComputeChecksum and GetChecksum 



 

 7

2. Metrics on the whole project 

We used Kiviat diagrams for another usage. We can 

represent one metric computed on all functions (or a 

subset) of the development project, as illustrated by figure 

4. In this case, the resulting diagram provides a synthetic 

diagram, easing the extraction of “trouble spots” of the 

project. This issue has to be analyzed by software engineers 

and for instance can lead to redesign steps. 

In our example in figure 4, we represented the 

cyclomatic complexity of all the functions of a file 

“currentpacket.c” in our project. This diagram shows that 

most functions are simple: the McCabe complexity is 1, 

which is the lowest value an algorithm can have. Two 

functions have a complexity of 2 and the function 

SetCurrentPacket has a complexity of 3, which is the 

highest complexity measured in our source code. 

McCabe recommends in Ref. 14 to redesign functions 

with a complexity greater or equal to 20. Thus, in our 

example, we do not have to simplify any function of 

currentpacket.c. 

In this diagram, we can insert circles to represent 

particular values. In our case, we represent a circle with a radius equal to the mean value of all complexity measures. 

Thus, we will consider for improvement only the functions with a complexity greater than this mean. For instance, 

as an improvement for software development, we could consider that these functions may be simplified and/or split 

into simpler sub-functions. 

We may have another circle with a radius of 20 (or any other arbitrary value), so we can see immediately all 

functions with unacceptable complexity. 

We searched for variants of Kiviat diagrams: T. Kerren, I. Jusufi and G. Yuhua worked on 3D-Kiviat diagrams 

in Ref. 18 and 19 and M. Lanza, M. Pinzger and H. Gall worked on Kiviat graphs in Ref. 20, but we found these 

diagrams harder to use than the one introduced in this section. Thus, we did not select these variants for integration 

in our software tool METRIX and we will not investigate further this type of diagram in this publication. 

B. City map diagrams 

In the previous section, we introduced a diagram to deal with software signature. In the rest of this section, we 

are going to introduce a completely different visualization we worked on: the city map diagram. This diagram is 

mainly used in urbanism, to represent cities and their buildings in three dimensions. As a software project can 

contain a very large number of source files, code functions and code variables, we would suggest that this 

visualization diagram adequately suits our complexity visualization issue. 

Historically, a more basic diagram is the treemap diagram. The treemap diagram is used in computing to 

represent in two dimensions source code metrics with rectangles. Some authors used variants of this class of 

visualization diagrams to represent values with esthetic considerations (see Ref. 21 for more explanations and 

examples). 

In Ref. 22, Richard Wettel and Michele Lanza proposed using a three-dimensional representation of treemap as 

an improvement, building the concept of data visualization through city map diagrams. We implemented this 

representation in our tool METRIX and parameterized it to evaluate our source-code. 

 
Figure 4. Kiviat to sum up the cyclomatic 

complexity for the file currentpacket.c 



 

 8

City map diagrams are indeed multi-parameters diagrams: each “building” is associated with a n–tuple of 

numeric values. Table 1 presents an example of instantiation of some city map 4-tuples with the metrics extracted 

from our source code. 

We experimented using other parameters for the n–tuple, but our experiments showed that we should not 

overloading the diagram. For example, all buildings are square because rectangular buildings are difficult to 

interpret. More than five colors reduce the diagram readiness, except if we use color shading. To position the 

building, we use a snail-algorithm4. We tried forcing a (x;y) placement with two metrics, but the results were not 

encouraging. 

Figure 5 shows three views of the same city map diagram relating to a file “currentpacket.c” of our source code. 

We used the associations from table 1 to create this diagram. The tool METRIX enables the user to move and turn the 

diagram, as well as to modify dynamically the angle and the zoom focus. This facilitates the diagram interpretation. 

In figure 5, we showed only three views; this is a drawback of this visualization: the city map diagrams are not 

well adapted for printing on paper; they are more adapted for interactive usage. Our graphical user interface 

presented in the next section enables the user to explore interactively the diagrams. 

Figure 5 shows that function ComputeChecksum is the most complex function of our file currentpacket.c.  The building associated with this function is the tallest (it means this is the longest function of the file).  This building is the largest (it means this function has the most important Halstead’s volume).  This building is not at the middle of the map (thus this function has not the maximum cyclomatic 

complexity).  The building is green (thus, the ratio of comments is acceptable). 

All these diagrams enable the user to interpret graphically the numeric values extracted from his/her source code. 

The diagrams “sort” data and foreground the values requiring attention, so they provide a way to represent quickly 

and easily the quality of source code. In any case METRIX remains a tool; the interpretation of its results requires a 

subjective human analysis, to define what is acceptable and what requires redesign and/or re-implementation. This 

limit of acceptability is specific for each company and each development project. However, some limits are 

commonly set. For instance, McCabe complexity should not be more than 20; or maximum volume should not 

exceed 1000. In the next section, we will give a detailed example of how engineers can use METRIX software on a 

specific software development project they may have to conduct. 

                                                           
4 This algorithm places the first item at the center of the map, then places the following items nearby, turning around 

the center like on a snail shell according to cyclomatic complexity. 

Figure 5. City map for the file currentpacket.c 

Table 1. Instantiation of city map axes of liberty with metrics issued from source code 

4-Tuple parameter 

city map axe 

<==> Metric measured on our source code 

Height of each building  LoC (number of Lines of Code) 

Width of each building  Halstead’s Volume of the Code 

Position of the building on 

the map 

 McCabe Cyclomatic Complexity (most complex functions are on the 

centers, simplest ones are on the bounds) 

Color of the building  Comment ratio (red≤20%, orange=between 20% and 50%, green≥50%) 

 



 

 9

C. Our Graphical User Interface METRIX 

Our first idea was to develop scripts to extract numerical data coming from the metrics computed on the source 

code and to import this data into a spreadsheet application. Nevertheless, the very large quantity of data generated 

by our tool lead us to revise our position. In order to ease the data processing and visualization, we developed a 

graphical user interface (GUI) with a single Window containing three tabs. 

The first tab called “Calc” and presented on figure 6 enables the user to indicate the source file(s) to evaluate and 

to parameterize the metrics to compute. It avoids using hand-start scripts with a prompt, but the open source aspect 

of our tool allows advanced users to (re)use our measuring scripts manually and/or to integrate them into other 

software. 

The second tab called “Csv” in figure 6 presents the numeric values as a list, with a tab per function and per file. 

The user may export these values to a spreadsheet application, in order to represent the values with common 

visualization graphs, like scatter plots, line plots, etc. 

The third tab called “Plots” and illustrated by figure 6 provides a way to visualize the city map diagrams for the 

source code, the signatures of functions and the comparisons between functions through radar/Kiviat plots. This tab 

enables the user to change the default behavior of the tool, for example to modify the ceiling and floor to insert color 

into the data, to adapt the placement of the buildings in the city map, etc. 

Our tool may generate a report in the form of a LaTeX file, so the user can use it to produce a PDF file. This 

report summarizes all the values measured on the project. Each function and each file make a section of this report. 

In each section, numerical values are coupled with the signature of the function (as a Kiviat diagram). Each file 

produces three views of the associated city map diagram, as well as different Kiviat diagrams for the different 

metrics measured on the functions of the file. 

We have published all METRIX source code on the web site http://www.recherche.enac.fr/~avaret/metrix. The 

source code is published under the General Public License v3 (GNU GPL v323). We added a Debian package to ease 

the installation and the deployment of our tool for the final users. 

IV. Case study: model improvements of an embedded secure router 

A. Aeronautical embedded secure router design context 

New aeronautical traffic profiles are growing in usage and complexity. Higher throughputs and new 

opportunities could be served by multiplexing some different data, but the heterogeneity of their safety and security 

constraints remains the main problem for promoting multiplexing solutions through a unique network link. For this 

purpose, we are producing an IP-based Secure Next Generation Router (SNG Router). This SNG Router provides 

regulation, routing and secure merging of different data sources, as well as preserving their segregation. We have 

published more details on the design and the implementation of our SNG Router in Ref. 1 and 24. 

Figure 6. Calc and Csv tabs of the Metrix GUI at left, "Plots" tab of METRIX GUI to represent Kiviat 

and city maps at right 



 

 10

During the development of SNG Router source code, we designed models for fast prototyping. However, the 

SNG source code reviews led us to conduct research on how to assess the quality of our source code and to provide 

a way to improve the automation of this step. The foundations of our tool METRIX were created. 

B. METRIX application results for an aeronautical embedded router design improvements  

We used METRIX to improve the source code of our embedded router as illustrated by figure 7. We modeled and 

designed our router through a set of Simulink and Stateflow models, next we automatically generated the source 

code with a tool called “transformer”. We were then able to apply METRIX to evaluate the quality of the source code. 

Finally we are able to adapt the original models, the transformer or directly the source code. 

We used METRIX on source codes generated with GeneAuto25. The tool GeneAuto is a transformer of high-level 

Simulink and Stateflow models into C-language source code. We have applied the tool on the generated source code 

and have generated a report in pdf format. 

Our first utilization of the report was to make improvements of the modeling on trouble spots. GeneAuto 

translates all the functions of the models into functions in C language. Then, we apply METRIX to extract the 

 
Figure 7. Integration of Metrix in the development process of our router SNG 

 
Figure 8. Example of remodeling of the function loadEnvironment 



 

 11

signatures of all the functions. Signatures whose 

polygon has a large area are an indication of 

complex and long functions (as discussed 

previously in section 3), thus we redesigned 

some of them to simplify and shorten these 

functions. Figure 8 illustrates an example of 

improvement where we redesigned several 

functions: we simplified the source code and 

consequently reduced the number of lines of 

code in addition to Halstead’s metrics “Effort to 

implement” and “estimation of Time to 

implement”. 

The report generated by METRIX contains 

Kiviat diagrams to synthesize McCabe 

cyclomatic complexities of all the functions. 

These diagrams show immediately intolerably 

complex functions. We remodeled all the 

functions with complexities higher than 20, 

modifying the algorithms to avoid some 

branches and splitting some of them into smaller 

and easier functions. 

Figure 9 shows the McCabe cyclomatic 

complexities of the functions generated from a model, before and after improvements. The global shape does not 

change but after improvement, the average complexity decreased from 3.69 to 3.52. 

We decided to perform an additional review on the tests to debug the functions on the centre of the city map and 

on the tallest buildings in this diagram: these functions are the most voluminous and the most complex, thus they are 

potentially the functions most subject to defects and bugs. This effort leads us to identify and correct some race 

conditions, correctly specified but incorrectly implemented in the model. 

C. METRIX application results to compare C and Ada auto-generated codes 

As a further step, we tried an experimental version of GeneAuto to produce Ada source code instead of C source 

code. We used METRIX to compare the generated code for both languages. Halstead’s metrics and McCabe 

complexity measures are language independent, so for the most part we compare the efficiency of the transformers 

rather than the efficiency of the languages.  

Table 2 summarizes an example of the metrics measured on the generated code from the same Stateflow model 

called “route”. In this example, the GeneAuto generated more functions for the Ada language than for the C 

language. This resulted in a lower average complexity for the transformer into Ada language. 

We performed another comparison between both codes in Ada and C generated by GeneAuto. Table 3 

summarizes the data. We can see that Ada code has a tendency to be longer than C code (the average Halstead’s 

volume is greater in Ada than in C), but the Halstead’s difficulty is lower in Ada than in C. Halstead’s estimation of 

time shows a slight advantage for the Ada language than for the C language. All these measures are relative to codes 

generated by two versions of Gene-Auto. Note that improvements of these transformers may inverse these 

tendencies but these results demonstrate that METRIX can help software designers to compare different projects built 

in different languages in order to select, for instance, the most efficient one. 

 

 
Figure 9. Example of gains for the McCabe cyclomatic 

 complexity metric 

Table 2. METRIX measurements of cyclomatic complexity for Ada and C 

 C language (route.c) Ada language (route.adb) 

Sum of McCabe complexity 37 38 

Number of functions generated 6 10 

Average complexity per function 6.2 3.8 

 



 

 12

 

V. Conclusion and future work 

In this paper we have introduced our new Open Source software tool METRIX which enables users to assess 

quality of source codes. We have enumerated the different source code metrics our tool computes, sorting them into 

a language-dependant set and a language-independent set. From these metrics, our tool generates various 

visualizations. Kiviat diagrams enable the user to assign a graphical signature to each function and to compare in a 

single diagram a metric computed on many functions. City map diagrams provide a way to represent multivariate 

data, i.e. multiple metrics synthesized on a single diagram. We provide with our tool a Graphical User Interface to 

facilitate the extraction of metrics and the representation of results. We have concluded the article with the example 

case study of an embedded router we have been developing and improving through METRIX. 

We are currently working on some potential METRIX improvements. Firstly, we are studying new metrics to 

complete the current set of source code metrics with an additional set of metrics computed directly from the models 

we use to generate the source code. The models we design are graphical representations and not textual source code. 

Indeed, some model metrics are very different from the classic metrics we have implemented in our tool. Secondly, 

we are working on METRIX visualization features: we have already implemented Kiviat and City map diagrams, and 

we are now looking at other types of diagram. In particular, we are testing different configurations to identify the 

optimum set of metrics for each diagram in order to improve METRIX ergonomics. 

Acknowledgements 

We would like to thank Rupert Salmon and John Kennedy for their help in editing this paper. 

References 
1A. Varet, N. Larrieu; ”New Methodology To Develop Certified Safe And Secure Aeronautical Software”, 14 pages, Digital 

Avionics Systems Conference (DASC-2011), Seattle, USA, October 2011. 
2M. Conrad, T. Erkkinen; T. Maier-Komor, G. Sandmann, M. Pomeroy; “Code Generation Verification – Assessing 

Numerical Equivalence between Simulink Models and Generated Code”, 

http://www.mathworks.com/tagteam/63743_SimTest10_CGV.pdf. 
3I.Stürmer, H. Pohlheim; “Model Quality Assessment in Practice: How to Measure and Assess the Quality of Software 

Models During the Embedded Software Development Process”, Proceedings of IEEE ERTS 2012, 

http://www.erts2012.org/Site/0P2RUC89/6D-2.pdf. 
4SourceMonitor software, http://www.campwoodsw.com/sourcemonitor.html. 
5Sonar, open platform to manage code quality, http://www.sonarsource.org/. 
6McCabeIQ software official website, http://www.mccabe.com/iq.htm. 
7Mathworks Polyspace: static analyser for software, http://www.mathworks.fr/products/polyspace/. 
8IBM Rational Software Modeler (RSM), http://pic.dhe.ibm.com/infocenter/rsmhelp/v7r5m0/index.jsp. 
9Horst Zuse, “A framework of software measurement”, Walter De Gruyter Inc, 1997. 
10M. Squared Technologies LLC, “Metrics Definitions”, http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics.htm, 

2012. 
11Linux community, “Linux Kernel Coding Style”, https://www.kernel.org/doc/Documentation/CodingStyle, 2000. 
12J. Seward, “Valgrind, a GPL licensed programming tool for memory debugging, memory leak detection, and profiling”, 

www.valgrind.org, 2002. 
13M. Halstead, “Elements of software science”, Elsevier, New York, 1977. 

Table 3. METRIX measurements of Halstead's metrics on C and Ada source code 

 Volume Ada Volume C Difficulty 

Ada 

Difficulty C Estimation 

of time Ada 

Estimation 

of time C 

Commonfunctions 682 337 8.6 9 327 170 

Currentpktmem 11109 4968 57.65 51 35582 14085 

Filters 6231 3198 42.5 40 14718 7168 

Localprocessing 581 472 6.3 14 202 373 

Main 5612 9234 13 56 3989 28894 

Route 11907 9587 67 108 44416 57572 

Verify IP header 3465 3022 27 42 5243 7130 

Average 5655 4403 32 46 14925 16484 

 



 

 13

14T. J. McCabe, A. H. Watson, “Structured testing: a testing methodology using the cyclomatic complexity metric”, 

http://www.mccabe.com/iq.htm, 1996. 
15“Introduction to Motor Industry Software Reliability Association for C language (MISRA C)”, 

http://www.embedded.com/columns/beginerscorner/9900659?_requestid=427335, 1998. 
16R. Fechete, G. Kienesberger, “Flow World – Controlling the flow since 2005 – cfg2dot”, 

http://cfg.w3x.org/cfg2dot/cfg2dot.html, 2012. 
17J. Ellson and al. “GraphViz, a Graph Visualization Software”, AT&T, 2011. 
18T. Kerren, I. Jusufi, “Novel Visual Representations for Software Metrics using 3D and animation”, Software Engineering 

Workshop band, 2009. 
19G. Yuhua, “Implementation of 3D Kiviat diagrams”, 2008. 
20M. Lanza, M. Pinzger, H. Gall, “Visualizing multiple evolution metrics”, 2005. 
21R. Vliegen, K. van Wijk, E-J. van der Linden, “Visualizing Business Data with Generalized Treemaps”, 

http://www.magnaview.nl/documents/Visualizing_Business_Data_with_Generalized_Treemaps.pdf, IEEE Transactions on 

visualization and computer graphics, Vol. 12, No.5, 8 pages, 2006. 
22R. Wettel, M. Lanza, “Visualizing software systems as cities”, in 4th IEEE International Workshop on Visualizing Software 

for understanding and analysis, VISSOFT, pages 92-99, 2007. 
23Free Software Foundation, “Welcome to GNU GPLv3 General Public License version 3”, http://gplv3.fsf.org/, 2007. 
24A. Varet, N. Larrieu, C. Macabiau; ” Design and Development of an Embedded Aeronautical Router With Security 

Capabilities”, 14 pages, Integrated Communication, Navigation and Surveillance Conference (ICNS-2012), Washington DC, 

USA, May 2012. 
25A. Toom, T. Naks, M. Pantel and al., “GeneAuto: an Automatic Code Generator for a safe subset of Simulink/Stateflow and 

Scicos”, in Embedded Real Time Software and Systems (ERTS²), 2008. 
26C.-B. Chirila, D. Juratoni, D. Tudor, V Cretu; “Towards a software quality assessment model based on open-source statical 

code analyzers”, 2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI). 

 


