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Titre: Introduction à l’analyse des valeurs extrêmes

Myriam Charras-Garrido1 and Pascal Lezaud2

Abstract: We provide an overview of the probability and statistical tools underlying the extreme value theory, which

aims to predict occurrence of rare events. Firstly, we explain that the asymptotic distribution of extreme values belongs,

in some sense, to the family of the generalised extreme value distributions which depend on a real parameter, called the

extreme value index. Secondly, we discuss statistical tail estimation methods based on estimators of the extreme value

index.

Résumé : Nous donnons un aperçu des résultats probabilistes et statistiques utilisés dans la théorie des valeurs extrêmes,

dont l’objectif est de prédire l’occurrence d’événements rares. Dans la première partie de l’article, nous expliquons que

la distribution asymptotique des valeurs extrêmes appartient, dans un certain sens, à la famille des distributions des

valeurs extrêmes généralisées qui dépendent d’un paramètre réel, appelé l’indice de valeur extrême. Dans la seconde

partie, nous discutons des méthodes d’évaluation statistiques des queues basées sur l’estimation de l’indice des valeurs

extrêmes
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1. Introduction

The consideration of the major risks in our technological society has become vital because of

the economic, environmental and human impacts of industrial disasters. One of the standard

approaches to studying risks uses the extreme value theory; a branch of statistics dealing with the

extreme deviations from the median of probability distributions. Of course, this approach is based

on the language of probability theory and thus the first question to ask is whether a probability

approach applies to the studied risk. For instance, can we use probabilities in order to study the

disappearance of dinosaurs? More recently, the Fukushima disaster, only 25 years after that of

Chernobyl, raises the question of the appropriateness of the probability methods used. Moreover,

as explained in Bouleau (1991), the extreme value theory aims to predict occurrence of rare events

(e.g. earthquakes of large magnitude), outside the range of available data (e.g. earthquakes of

magnitude less than 2). So, its use requires some precautions, and in Bouleau (1991) the author

concludes that

The approach attributing a precise numerical value for the probability of a rare phenomenon is suspect,

unless the laws of nature governing the phenomenon are explicitly and exhaustively known [...] This does
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Extreme Value Analysis: an Introduction 67

not mean that the use of probability or probability concepts should be rejected.

Nevertheless, the extreme value theory remains a well suited technique capable of predicting

extreme events. Although the application of this theory in the real world always needs to be viewed

with a critical eye, we suggest, in this article, an overview of the mathematical and statistical

theories underlying it.

As already said before, the main objective of the extreme value theory is to know or predict the

statistical probabilities of events that have never (or rarely) been observed. Firstly, the statistical

analysis of extreme values has been developed in order to study flood levels. Nowadays, the

domains of application include other meteorological events (such as precipitation or wind speed),

industry (for example important malfunctions), finance (e.g. financial crises), insurance (for very

large claims due to catastrophic events), environmental sciences (like concentration of ozone in

the air), etc.

Formally, we consider the sample X1, . . . ,Xn of n independent and identically distributed (iid)

random variables with common cumulative distribution function (cdf) F . We define the ordered

sample by X1,n ≤ X2,n ≤ . . . ≤ Xn,n = Mn. We are interested in two related problems. The first

one consists in estimating the tail of the survivor function F̄ = 1−F: given hn > Mn, we want

to estimate p = F̄(hn). This corresponds to the estimation of the risk to get out a zone, for

example the probability to exceed the level of a dyke for a flood application. The second problem

consists in estimating extreme quantiles: given pn < 1/n, we want to estimate h = F̄−1(pn). This

corresponds to estimating the limit of a critical zone, as the level of a dyke for a flood application,

to be exceeded with probability pn. Note that since we are interested to extrapolate outside the

range of available observations, we have to assume that the quantile probability depends on n and

that limn→∞ pn = 0.

In both problems, the same difficulty arises: the cdf F is unknown and difficult to estimate

beyond observed data. We want to get over the maximal observation Mn, that means to extrapolate

outside the range of the available observations. Both parametric and non parametric usual estima-

tion methods fail in this case. For the parametric method, models considered to give similar results

in the sample range can diverge in the tail. This is illustrated in Figure 1 that presents the relative

difference between quantiles from a Gaussian and a Student distribution. For the non parametric

method, 1− F̂n(x) = 0 if x > Mn, where F̂ denotes the empirical distribution function, i.e. it is

estimated that outside the sample range nothing is likely to be observed. As we are interested in

extreme values, an intuitive solution is to use only extreme values of the sample that may contain

more information than the other observations on the tail behaviour. Formally, this solution leads

to a semi-parametric approach that will be detailed later.

Before starting with the description of the estimation procedures, we need to introduce the

probability background which is based on the elegant theory of max-stable distribution functions,

the counterpart of the (alpha) stable distributions, see Feller (1971). The stable distributions are

concerned with the limit behaviour of the partial sum Sn = X1 +X2 + · · ·+Xn, as n → ∞, whereas

the theory of sample extremes is related to the limit behaviour of Mn. The main result is the Fisher-

Tippett-Gnedenko Theorem 2.3 which claims that Mn, after proper normalisation, converges in

distribution to one of three possible distributions, the Gumbel distribution, the Fréchet distribution,

or the Reversed Weibull distribution. In fact, it is possible to combine these three distributions

together in a single family of continuous cdfs, known as the generalized extreme value (GEV)
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68 M. Charras-Garrido and P. Lezaud

FIGURE 1. Relative distance between quantiles of order p computed with N (0,1) and Student(4) models.

distributions. A GEV is characterized by a real parameter γ , the extreme value index, as a stable

distribution is it by a characteristic exponent α ∈]0,2]. Let us mention the similarity with the

Gaussian Law, a stable distribution with α = 2, and the Central Limit Theorem. Next we have

to find some conditions to determine for a given cdf F the limiting distribution of Mn. The best

tools suited to address that are the tail quantile function (cf. (3) for the definition) and the slowly

varying functions. Finally, these results will be widened to some stationary time series.

The paper is articulated in two main Sections. In Section 2, we will set up the context in order

to state the Fisher-Tippett-Gnedenko Theorem in Subsection 2.1. In this paper, we will follow

closely the approach presented in Beirlant et al. (2004b), which transfers the convergence in

distribution to the convergence of expectations for the class of real, bounded and continuous

functions. Other recent texts include Embrechts et al. (2003) and Reiss and Thomas (1997). In

Subsection 2.2, some equivalent conditions in terms of F will be given, since it is not easy to

compute the tail quantile function. Finally, in Subsection 2.3 the condition about the independence

between the Xi will be relaxed in order to adapt the previous result for stationary time series

satisfying a weak dependence condition. The main result of this part is Theorem 2.12.

Section 3 addresses the statistical point of view. Subsection 3.1 gives asymptotic properties of

extreme order statistics and related quantities and explains how they are used for this extrapolation

to the distribution tail. Subsection 3.2 presents tail and quantile estimations using these extrapola-

tions. In Subsection 3.3, different optimal control procedures on the quality of the estimates are

explored, including graphical procedures, tests and confidence intervals.
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Extreme Value Analysis: an Introduction 69

2. The Probability theory of Extreme Values

Let us consider the sample X1, . . . ,Xn of n iid random variables with common cdf F . We define

the ordered sample by X1,n ≤ X2,n ≤ . . . ≤ Xn,n = Mn, and we are interested in the asymptotic

distribution of the maxima Mn as n → ∞. The distribution of Mn is easy to write down, since

P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = Fn(x).

Intuitively extremes, which correspond to events with very small probability, happen near

the upper end of the support of F , hence the asymptotic behaviour of Mn must be related to the

right tail of the distribution near the right endpoint. We denote by ω(F) = inf{x ∈ R : F(x)≥ 1},

the right endpoint of F and by F̄(x) = 1−F(x) = P(X > x) the survivor function of F . We

obtain that for all x < ω(F), P(Mn ≤ x) = Fn(x) → 0 as n → ∞, whereas for all x ≥ ω(F)
P(Mn ≤ x) = Fn(x) = 1.

Thus Mn converges in probability to ω(F) as n → ∞, and since the sequence Mn is increasing,

Mn converge almost surely to ω(F). Of course, this information is not very useful, so we want to

investigate the fluctuations of Mn in the similar way the Central Limit Theorem (CLT) is derived

for the sum Sn = ∑i Xi. More precisely, we look after conditions on F which ensure that there

exists a sequence of numbers {bn,n ≥ 1} and a sequence of positive numbers {an,n ≥ 1} such

that for all real values x

P

(
Mn −bn

an

≤ x

)
= Fn(anx+bn)→ G(x) (1)

as n → ∞, where G is a non-degenerate distribution (i.e. without Dirac mass). If (1) holds, F is

said to belong to the domain of attraction of G and we will write F ∈ D(G). The problem is

twofold: (i) find all possible (non-degenerate) distributions G that can appear as a limit in (1), (ii)

characterize the distributions F for which there exists sequences (an) and (bn) such that (1) holds.

Introducing the threshold un = un(x) := anx+bn gives the more understanding interpretation

of our problem, since

P(Mn ≤ un) = Fn(un) =

(
1− nF̄(un)

n

)n

.

Hence, we need rather conditions on the tail F̄ to ensure that P(Mn ≤ un) converges to a non-trivial

limit. The first result you obtain is the following:

Proposition 2.1. For a given τ ∈ [0,∞] and a sequence (un) of real numbers the two assertions

(i) nF̄(un)→ τ , and (ii) P(Mn ≤ un)→ e−τ are equivalent.

Clearly, Poisson’s limit Theorem is the key behind this Proposition. Indeed, we assume for

simplicity that 0 < τ < ∞ and we let Kn(un) = ∑
n
i=1 I{Xi>un}; it is the number of excesses over the

threshold un in the sample X1, . . . ,Xn. This quantity has a binomial distribution with parameters n

and p = F̄(un);

P(Kn(un) = k) =

(
n

k

)
pk(1− p)n−k .

The Poisson’s limit Theorem yields that Kn(un) converges in law to a Poisson distribution with

parameter τ if and only if EKn(un)→ τ; this is nothing but Proposition 2.1.
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70 M. Charras-Garrido and P. Lezaud

Now, let us assume that X1 > un and consider the discrete time T (un) such that X1+T (un) > un

and Xi ≤ un for all 1 < i ≤ T (un), i.e. T (un) = min{i ≥ 1 : Xi+1 > un}. In order to hope for a limit

distribution, we will have to normalize T (un) by the factor n (so T (un)/n ∈ (0,1]); then

P
(
n−1T (un)> k/n

)
= P(X2 ≤ un, · · · ,Xk+1 ≤ un|X1 > un) = F(un)

n(k/n).

Let x > 0, then for k = ⌊nx⌋

P(n−1T (un)> x) = P(n−1T (un)> k/n) = (1− F̄(un))
n(k/n)

,

hence if nF̄(un)→ τ as n → ∞, we have P(n−1T (un)> x)→ e−τx, that means the excess times

are asymptotically distributed according to an exponential law with parameter τ . The precise

approach of this result requires the introduction of the point process of exceedances (Nn) defined

by:

Nn(B) =
n

∑
i=1

δi/n(B)I{Xi>un} = ♯{i/n ∈ B : Xi > un},

where B is a Borel set on (0,1] and δi/n(B) = 1 if i/n ∈ B and 0 else. Then we have the following

result (see Resnick (1987)):

Proposition 2.2. Let (un)n∈N be threshold values tending to ω(F) as n → ∞. Then, we have

limn→∞ nF̄(un) = τ ∈ (0,∞), if and only if (Nn) converges in distribution to a Poisson process N

with parameter τ as n → ∞.

2.1. The possible limits

Hereafter, we work under the assumption that the underlying cdf F is continuous and strictly

increasing. What are the possible non-degenerate limit laws for the maxima Mn? Firstly, the limit

law of a sequence of random variables is uniquely determined up to changes of location and scale

(see Resnick (1987)), that means if there exists sequences (an) and (bn) such that

P

(
Xn −bn

an

≤ x

)
→ G(x),

then the relation

P

(
Xn −βn

αn

≤ x

)
→ H(x),

holds for the sequences (βn) and (αn) if and only if

lim
n→∞

an/αn = σ ∈ [0,∞), lim
n→∞

(bn −βn)/αn = µ ∈ R.

In that case, H(x) = G((x−µ)/σ) and we say that H and G are of the same type. Thus, a cdf F

cannot be in the domain of attraction of more than one type of cdf.

Furthermore, the question turns out to be closely related to the following property, identified

by Fisher and Tippett (1928). Assume that the properly normalized and centred maxima Mn

converges in distribution to G and let n = mr, with m,n,r ∈ N. Hence, as n → ∞, we have

Fn(amx+bm) = [Fm(amx+bm)]
r → Gr(x).
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Extreme Value Analysis: an Introduction 71

From the previous discussion, it follows that there exist ar > 0 and br such that Gr(x) = G(arx+
br); we say that the cdf G is max-stable.

To emphasize the role played by the tail function, we define an equivalence relation between

cdfs in this way. Two cdfs F and H are called tail-equivalent if they have the same right end-point,

i.e. if ω(F) = ω(H) = x0, and

lim
x↑x0

1−F(x)

1−H(x)
= A ,

for some constant A. Using the previous discussion, it can be shown (see Resnick (1987)) that

F ∈ D(G) if and only if H ∈ D(G); moreover, we can take the same norming constants.

The main result of this Section is the Theorem of Fisher, Tippet and Gnedenko which charac-

terizes the max-stable distribution functions.

Theorem 2.3 (Fisher-Tippett-Gnedenko Theorem). Let (Xn) be a sequence of iid random vari-

ables. If there exist norming constants an > 0, bn ∈ R and some non degenerate cdf G such that

a−1
n (Mn −bn) converges in distribution to G, then G belongs to the type of one of the following

three cdfs:

Gumbel: G0(x) = exp(−e−x), x ∈ R,

Fréchet: G1,α(x) = exp(−x−α), x ≥ 0, α > 0,

Reversed Weibull: G2,α(x) = exp(−(−x)−α), x ≤ 0, α < 0.

Figure 2 shows the convergence of (Mn −bn)/an to its extreme value limit in case of a uniform

distribution U [0,1].

FIGURE 2. Plot of P((Xn,n −bn)/an ≤ x) = (1+(x−1)/n)n for n = 5 (dashed line) and n = 10 (dotted line) and its

limit exp(−(1− x)) (solid line) as n → ∞ for a U [0,1] distribution F.
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72 M. Charras-Garrido and P. Lezaud

The three types of cdfs given in Theorem (2.3) can be thought of as members of a single family

of cdfs. For that, let us introduce the new parameter γ = 1/α and the cdf

Gγ(x) = exp(−(1+ γx)−1/γ)), 1+ γx > 0. (2)

The limiting case γ → 0 corresponds to the Gumbel distribution. The cdf Gγ(x) is known as the

generalized extreme value or as the extreme value cdf in the von Mises form, and the parameter

γ is called the extreme value index. Figure 3 gives examples of Gumbel, Fréchet and Reversed

Weibull distributions.

FIGURE 3. Examples of Gumbel (γ = 0 in solid line), Fréchet (for γ = 1 in dashed line) and Reversed Weibull (for

γ =−1 in dotted line) cdfs.

Now, we will present the sketch of the Theorem’s proof, following the approach of Beirlant

et al. (2004b) which transfers the convergence in distribution to the convergence of expectations

for the class of real, bounded and continuous functions (see Helly-Bray Theorem in Billingsley

(1995)).

Let us introduce the tail quantile function

U(t) := inf{x : F(x)≥ 1−1/t}, (3)

which is non-decreasing over the interval [1,∞). Then, for any real, bounded and continuous

functions f ,

E
[

f
(
a−1

n (Mn −bn)
)]

= n

∫ ∞

−∞
f

(
x−bn

an

)
Fn−1(x)dF(x),

=
∫ n

0
f

(
U(n/v)−bn

an

)(
1− v

n

)n−1

dv.
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Extreme Value Analysis: an Introduction 73

Now observe that (1− v/n)n−1 → e−v, as n → ∞, while the interval of integration extends to

[0,∞). To obtain a limit for the left-hand term, we can make a−1
n (U(n/v)−bn) convergent for all

positive v. Considering the case v = 1 suggests that bn =U(n) is an appropriate choice. Thereby,

the natural condition to be imposed is that for some positive function a and any u > 0

lim
x→∞

U(xu)−U(x)

a(x)
= h(u) exists, (C )

with the limit function h not identically equal to zero. We have the following Proposition (Propo-

sition 2.2 in Section 2.1 in Beirlant et al. (2004b))

Proposition 2.4. The possible limits in (C ) are given by

{
hγ(u) = c uγ−1

γ γ 6= 0

h0(u) = c logu
,

where c ≥ 0 and γ is real.

The case c = 0 has to be excluded since it leads to a degenerate limit, and the case c > 0 can be

reduced to the case c = 1 by incorporating c in the function a. Hence, we replace the condition

(C ) by

lim
x→∞

U(xu)−U(x)

a(x)
= hγ(u) exists, (Cγ). (4)

The above result entails that under (Cγ), we find that with bn =U(n) and an = a(n)

E
[

f
(
a−1

n (Mn −bn)
)]

→
∫ ∞

0
f
(
hγ(1/v)

)
e−vdv :=

∫ ∞

−∞
f (u)dGγ(u),

as n → ∞, with Gγ given by (2).

If we write a(x) = xγℓ(x), then the limiting condition a(xu)/a(x)→ uγ leads to ℓ(xu)/ℓ(x)→ 1.

This kind of condition refers to the notion of regular variation.

Definition 2.5. A positive measurable function ℓ on (0,∞) which satisfies

lim
x→∞

ℓ(xu)

ℓ(x)
= 1, u > 0,

is called slowly varying at ∞ (we write ℓ ∈ R0).

A positive measurable function h on (0,∞) is regularly varying at ∞ of index γ ∈ R (we write

h ∈ Rγ ) if

lim
x→∞

h(xu)

h(x)
= xγ , u > 0.

The slowly varying functions play a fundamental role in probability theory, good references are

the books of Feller (1971), Bingham et al. (1989) and Korevaar (2004). In particular, we have the

following result due to Karamata (1933): ℓ ∈ R0 if and only if it can be represented in the form

ℓ(x) = c(x)exp

{∫ x

1

ε(u)

u
du

}
,
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74 M. Charras-Garrido and P. Lezaud

where c(x)→ c∈ (0,∞) and ε(x)→ 0 as x→∞. Typical examples are ℓ(x) = (logx)β for arbitrary

β and ℓ(x) = exp{(logx)β}, where β < 1. Furthermore, if h ∈ Rγ with γ > 0, then h(x)→ ∞,

while for γ < 0, h(x)→ 0, as x ↑ ∞.

Because of their intrinsic importance, we distinguish between the three cases where γ > 0,

γ < 0 and the intermediate case where γ = 0. We have the following result (see Theorem 2.3 in

Section 2.6 in Beirlant et al. (2004b))

Theorem 2.6. Let (Cγ) hold

(i) Fréchet case: γ > 0. Here ω(F) = ∞, the ratio a(x)/U(x)→ γ as x → ∞ and U is of the

same regular variation as the auxiliary function a: moreover, (Cγ) is equivalent with the

existence of a slowly varying function ℓU for which U(x) = xγℓU(x).

(ii) Gumbel case: γ = 0. The ratios a(x)/U(x)→ 0 and a(x)/{ω(F)−U(x)}→ 0 when ω(F)
is finite.

(iii) Reversed Weibull case: γ < 0. Here ω(F) is finite, the ratio a(x)/{ω(F)−U(x)}→−γ and

{ω(F)−U(x)} is of the same regular variation as the auxiliary function a: moreover, (Cγ)
is equivalent with the existence of a slowly varying function ℓU for which ω(F)−U(x) =
xγℓU(x).

2.2. Equivalent conditions in terms of F

Until now, only necessary and sufficient conditions on U have been given in such a way that

F ∈ D(Gγ). Nevertheless, it is not always easy to compute the tail quantile function of a cdf F .

So, it could be preferable to express the relation between (Cγ) to the underlying distribution F .

The link between the tail of F and its tail quantile function U depends on the concept of the de

Bruyn conjugate (see Proposition 2.5 in Section 2.9.3 in Beirlant et al. (2004b)).

Proposition 2.7. If ℓ ∈ R0, then there exists ℓ∗ ∈ R0, the de Bruyn conjugate of ℓ, such that

ℓ(x)ℓ∗(xℓ(x))→ 1, x ↑ ∞.

Moreover, ℓ∗ is asymptotically unique in the sense that if also ℓ̂ is slowly varying and ℓ(x)ℓ̂(xℓ(x))→
1, then ℓ∗ ∼ ℓ̂. Furthermore, (ℓ∗)∗ ∼ ℓ.

This yields the full equivalence between the statements

1−F(x) = x−1/γℓF(x), and U(x) = xγℓU(x),

where the two slowly varying functions ℓF and ℓU are linked together via the de Bruyn conjugation.

So, according to Theorem 2.6 (i) and (iii) we get that

Theorem 2.8. Referring to the notation of Theorem 2.6, we have:

(i) Fréchet case: γ > 0. F ∈ D(Gγ) if and only if there exists a slowly varying function ℓF for

which F̄(x) = x−1/γℓF(x). Moreover, the two slowly varying functions ℓU and ℓF are linked

together via the de Bruyn conjugation.

(ii) Reversed Weibull case: γ < 0. F ∈ D(Gγ) if and only if there exists a slowly varying

function ℓF for which F̄
(
ω(F)− x−1

)
∼ x1/γℓF(x), x ↑ ∞. Moreover, the two slowly varying

functions ℓU and ℓF are linked together via the de Bruyn conjugation.

Journal de la Société Française de Statistique, Vol. 154 No. 2 66-97

http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



Extreme Value Analysis: an Introduction 75

When the cdf F has a density f , it is possible to derive sufficient conditions in terms of the

hazard function r(x) = f (x)/(1−F(x)). These conditions, which are due to von Mises (1975),

are known as the von Mises conditions. In particular, the calculations involved on checking

the attraction condition to G0 are often tedious, in this respect, the von Mises criterion can be

particularly useful.

Proposition 2.9 (von Mises’ Theorem). Sufficient conditions on the density of a distribution for

it belongs to D(Gγ) are the following:

(i) Fréchet case: γ > 0. If ω(F) = ∞ and limx↑∞ xr(x) = 1/γ , then F ∈ D(Gγ),

(ii) Gumbel case: γ = 0. r(x) is ultimately positive in the neighbourhood of ω(F), is differen-

tiable there and satisfies limx↑ω(F)
dr(x)

dx
= 0, then F ∈ D(G0)

(iii) Reversed Weibull case: γ < 0. ω(F) < ∞ and limx↑ω(F)(ω(F)− x)r(x) = 1/γ , then F ∈
D(Gγ) .

Some examples of distributions which belong to the Fréchet, the Reversed Weibull and the

Gumbel domain are given in respectively Table 1, Table 2 and Table 3. For more details about the

norming constants an and bn, see Embrechts et al. (2003). We also recall that the choice of these

constants is not unique, for example we can choose αn instead of an if limn→∞ an/αn = 1 (see the

beginning of the Section 2.1).

TABLE 1. A list of distributions in the Fréchet domain

Distribution 1−F(x)
Extreme value

index

Pareto ∼ Kx−α , K,α > 0 1
α

F(m,n)

∫ ∞
x

Γ( m+n
2 )

Γ( m
2
)Γ( n

2
)
ω

m
2
−1
(
1+ m

n ω
)− m+n

2 dω

x > 0; m,n > 0

2
n

Fréchet
1− exp(−x−α )

x > 0;α > 0
1
α

Tn

∫ ∞
x

2Γ( n+1
2 )√

nπΓ( n
2
)

(
1+ ω2

n

)− n+1
2

dω

x > 0;m,n > 0

1
n

TABLE 2. A list of distributions in the Reversed Weibull domain

Distribution 1−F
(
ω(F)− 1

x

) Extreme value

index

Uniform
1
x

x > 1
−1

Beta(p,q)

∫ 1
1− 1

x

Γ(p+q)
Γ(p)Γ(q)

up−1(1−u)q−1du

x > 1; p,q > 0
− 1

q

Reversed Weibull
1− exp(−x−α )
x > 0; α > 0

− 1
α

Finally, we give an alternative condition for (Cγ) (Proposition 2.1 in Section 2.6 in Beirlant

et al. (2004b)). It constitutes the basis for numerous statistical techniques to be discussed in

Section 3.
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TABLE 3. A list of distributions in the Gumbel domain

Distribution 1−F(x)

Weibull exp(−λxτ ), x > 0; λ ,τ > 0

Exponential exp(−λx), x > 0; λ > 0

Gamma λ m

Γ(m)

∫ ∞
x um−1 exp(−λu)du, x > 0; α,m > 0

Logistic 1/(1+ exp(x)), x ∈ R

Normal
∫ ∞

x
1√

2πσ 2
exp
(
− (x−µ)2

2σ 2

)
, x ∈ R; σ > 0,µ ∈ R

Log-normal
∫ ∞

x
1√

2πσ 2u
exp
(
− 1

2σ 2 (logu−µ)2
)

du, x > 0; µ ∈ R,σ > 0

Proposition 2.10. The distribution F belongs to D(Gγ) if and only if for some auxiliary function

b and 1+ γv > 0
1−F(y+b(y)v)

1−F(y)
→ (1+ γv)−1/γ , (C ∗

γ )

as y → ω(F). Then
b(y+ vb(y))

b(y)
→ 1+ γv.

Condition (C ∗
γ ) has an interesting probabilistic interpretation. Indeed, (C ∗

γ ) reformulates as

lim
x↑ω(F)

P

(
X − v

b(v)
> x

∣∣∣X > v

)
= (1+ γv)−1/γ .

Hence, the condition (C ∗
γ ) gives a distributional approximation for the scaled excesses over

the high threshold v, and the appropriate scaling factor is b(v). This motivates the following

definitions.

Let X be a random variable with cdf F and right endpoint ω(F). For a fixed u < ω(F),

Fu(x) = P(X −u ≤ x|X > u), x ≥ 0 (5)

is the excess cdf of the random variable X over the threshold u. The function

e(u) = E(X −u|X > u)

is called the mean excess function of X . The function e uniquely determines F . Indeed, whenever

F is continuous, we have

1−F(x) =
e(0)

e(x)
exp

(
−
∫ x

0

1

e(u)
du

)
, x > 0.

Define the cdf Hγ by

Hγ(x) =

{
1− (1+ γx)−1/γ , if γ 6= 0,

1− e−x, if γ = 0,

where x ≥ 0 if γ ≥ 0 and 0 ≤ x ≤ −1/γ if γ < 0. Hγ is called a standard generalised Pareto

distribution (GPD). In order to take into account a scale factor σ , we will denote

Hγ,σ (x) =

{
1− (1+ γ(x/σ))−1/γ , if γ 6= 0,

1− e−x/σ , if γ = 0,
(6)
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which is defined for x ∈ IR+ if γ ≥ 0 and x ∈ [0,−σ/γ[ if γ < 0. Then, condition (C ∗
γ ) above

suggests a GPD as appropriate approximation of the excess cdf Fu for large u. This result is often

formulated as follows in Pickands (1975): for some function σ to be estimated from the data

F̄u(x)≈ Hγ, σ(u)(x).

2.3. Extremes of Stationary Time Series

Beforehand, we restricted ourselves to iid random variables. However, in reality extremal events

often tend to occur in clusters caused by local dependence. This requires a modification of standard

methods for analysing extremes. We say that the sequence of random variable (Xi) is strictly

stationary if for any integer h≥ 0 and n≥ 1, the distribution of the random vector (Xh+1, . . . ,Xh+n)
does not depend on h. We seek the limiting distribution of (Mn − bn)/an for some choice of

normalizing constants an > 0 and bn. However, the limit distribution needs not to be the same as

for the maximum M̃n of the associated independent sequence (X̃i)1≤i≤n with the same marginal

distribution as (Xi). For instance, starting with an iid sequence (Yi,1 ≤ i ≤ n+ 1) of random

variables with common cdf H, we define a new sequence of random variables (Xi,1 ≤ i ≤ n) by

Xi = max(Yi,Yi+1). We see that the dependence causes large values to occur in pairs. Indeed, the

random variables Xi are distributed according to the cdf F = H2; so if F satisfies the equivalent

conditions in Proposition 2.1, we conclude that nH(un) → τ/2. Consequently, the maximum

Mn = Xn,n satisfies

lim
n→∞

P(Mn ≤ un) = e−τ/2.

To hope for the existence of a limiting distribution of (Mn−bn)/an, the long-range dependence

at extreme levels needs to be suitably restricted. To measure the long-range dependence, Leadbetter

(1974) introduced a weak dependence condition known as the D(un) condition. Before setting out

this condition, let us introduce some notations as in Beirlant et al. (2004b). For a set J of positive

integers, let M(J) = maxi∈J Xi (with M( /0) =−∞)). If I = {i1, . . . , ip}, J = { j1, . . . , jq}, we write

that I ≺ J if and only if

1 ≤ i1 < · · ·< ip < j1 · · ·< jq ≤ n,

and the distance d(I,J) between I and J is given by d(I,J) = j1 − ip.

Condition 2.11 (D(un)). For any two disjoint subsets I, J of {1, . . . ,n} such that I ≺ J and

d(I,J)≥ ln we have

∣∣∣P({M(I)≤ un}∩{M(J)≤ un})−P(M(I)≤ un)P(M(J)≤ un)
∣∣∣≤ αn, ln

and αn, ln → 0 as n → ∞ for some positive integer sequence ln such that ln = o(n).

The D(un) condition says that any two events of the form {M(I) ≤ un} and {M(J) ≤ un}
become asymptotically independent as n increases when the index sets I and J are separated by

a relatively short distance ln = o(n). This condition is much weaker than the standard forms of

mixing condition (such as strong mixing).

Now, we partition the integers {1, . . . ,n} into kn disjoint blocks I j = {( j−1)rn +1, . . . , jrn} of

size rn = o(n) with kn = [n/rn] and, in case knrn < n, a remainder block, Ikn+1 = {knrn+1, . . . ,n}.
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A crucial point is that the events {Xi > un} are sufficiently rare for the probability of an exceedance

occurring near the ends of the blocks I j to be negligible. Therefore, if we drop out the remainder

block and the terminal sub-blocks I′j = { jrn − ln +1, . . . , jrn} of size ln, we can consider only the

sub-block I∗j = {( j−1)rn +1, . . . , jrn − ln} which are approximatively independent. Thus we get

P(Mn ≤ un) = P

(
kn⋂

j=1

{M(I∗j )≤ un}
)
+o(1).

Finally, using condition D(un) with knαn,ln → 0, we obtain

∣∣∣∣∣P
(

kn⋂

j=1

{M(I∗j )≤ un}
)
−P

kn({M(I∗1 )≤ un})
∣∣∣∣∣≤ knαn,ln → 0,

as n → ∞. Now, we observe that if thresholds un increase at a rate such that limsupnF(un)> ∞,

then

∣∣Pkn(M(I∗1 )≤ un)−P
kn(Mrn

≤ un)
∣∣≤ kn |P(M(I∗1 )≤ un)−P(Mrn

≤ un)|
= knP(M(I∗1 )≤ un < M(I′1))

≤ knlnP(X1 > un)→ 0.

So, under the D(un), we obtain the appropriate condition

P(Mn ≤ un)−P
kn(Mrn

≤ un)→ 0 (7)

from which the following fundamental results were derived, see Leadbetter (1974, 1983)

Theorem 2.12. Let (Xn) be a stationary sequence for which there exist sequences of constants

an > 0 and bn and a non-degenerate distribution function G such that

P

(
Mn −bn

an

≤ x

)
→ G(x), n → ∞.

If D(un) holds with un = anx+bn for each x such that G(x)> 0, then G is an extreme value

distribution function.

Theorem 2.13. If there exist sequences of constants an > 0 and bn and a non-degenerate distri-

bution function G̃ such that

P

(
M̃n −bn

an

≤ x

)
→ G̃(x), n → ∞,

if D(anx+bn) holds for each x such that G̃(x)> 0 and if P[(Mn −bn)/an ≤ x] converges for some

x, then we have

P

(
Mn −bn

an

≤ x

)
→ G(x) := G̃θ (x), n → ∞,

for some constant θ ∈ [0,1].
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Theorem 2.12 shows that the possible limiting distributions for maxima of stationary sequences

satisfying the D(un) condition are the same as those for maxima of independent sequences.

Nevertheless Theorem 2.12 does not mean that the relations Mn ∈ D(G) and M̃n ∈ D(G̃) hold

with G̃ = G. In fact, G is often of the form G̃θ for some θ ∈ [0,1] (see for instance the introductory

example). This is precisely what Theorem 2.13 claims.

The constant θ is called extremal index and always belongs to the interval [0,1]. For instance,

if we consider the max-autoregressive process of order one defined by the recursion

Xi = max{αXi−1,(1−α)Zi}

where 0 ≤ α < 1 and where the Zi are independent Fréchet random variables. Then it can be

proved that (cf. Beirlant et al. (2004b) Section 10.2.1)

P(Mn ≤ x) = P(X1 ≤ x)[P(Z1 ≤ x/(1−α)]→ exp[−(1−α)/x] := G(x)

Whereas, G̃(x) = exp(−1/x), so θ = 1−α . This example shows that any number in (0,1] can

be an extremal index. The case θ = 0 is pathological, it entails that sample maxima Mn of the

process are of smaller order than sample maxima M̃n. We refer to Leadbetter et al. (1983) and

Denzel and O’Brien (1975) for some examples. Moreover, θ > 1 is impossible; this follows from

the following argument (see Embrechts et al. (2003) Section 8.1.1):

P(Mn ≤ un) = 1−P

(
n⋃

i=1

{Xi > un}
)

≥ 1−nF(un).

The left-hand side converges to e−θτ whereas the right-hand side has limit 1− τ , hence e−θτ ≥
1− τ for all τ > 0 which is possible only if θ ≤ 1. A case in which there is no extremal index is

given in O’Brien (1974). In this article, each Xn is uniform over [0,1], X1,X3, . . . being independent

and X2n a certain function of X2n−1 for each n. Finally, a case where D(un) does not hold but the

extremal index exists is given by the following example of Davis (1982). Let Y1,Y2, . . ., be iid, and

define the sequence

(X1,X2,X3, . . .) = (Y1,Y2,Y2,Y3,Y3, . . .) or (Y1,Y1,Y2,Y2, . . .)

each with probability 1/2. It follows from Davis (1982) that the sequence (Xn) has extremal

index 1/2. However D(un) does not hold: for example, if X1 = X2 then Xn = Xn+1 if n is odd and

Xn 6= Xn+1 if n is even. For more details, we refer to Leadbetter (1983).

To sum up, unless θ is equal to one, the limiting distributions for the independent and stationary

sequences are not the same. Moreover, if θ > 0 then G is an extreme value distribution, but with

different parameters than G̃. Thus if

G(x) = exp

(
−
(

1+ γ
x−µ

σ

)−1/γ
)
,

then we have

G̃(x) = exp

(
−
(

1+ γ
x− µ̃

σ̃

)−1/γ
)
,
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with µ = µ̃ − σ̃(1−θ γ)/γ and σ = σ̃θ γ (if γ = 0, σ = σ̃ and µ = µ̃ +σ logθ ).

Under some regularity assumptions the limiting expected number of exceedances over un in

a block containing at least one such exceedance is equal to 1/θ (if θ > 0). In fact, using the

notations previously introduced, we obtain (see Beirlant et al. (2004b) Section 10.2.3)

1

θ
= lim

n→∞

rnF̄(un)

P(Mrn
> un)

= E

[
rn

∑
i=1

1(Xi > un)
∣∣∣Mrn

> un

]
.

We can have an insight into this result with the following approach: let us assume that un is a

threshold sequence such that nF(un) → τ and P(Mn ≤ un) → exp(−θτ), then from (7) (with

kn = ⌊n/rn⌋) we get
n

rn

P(Mrn
> un)→ θτ,

and conclude that

θ = lim
n→∞

P(Mrn
> un)

rnF(un)
.

Another interpretation of extremal event, due to O’Brien (1987), is that under some assumptions

θ represents the limiting probability that an exceedance is followed by a run of observations

below the threshold

θ = lim
n→∞

P(max{X2,X3, . . . ,Xrn
} ≤ un|X1 > un) .

So, both interpretations identify θ = 1 with exceedances occurring singly in the limit, unlike

θ < 1 which implies that exceedances tend to occur in clusters.

The case θ = 1 can be checked by using the following sufficient condition D′(un) introduced

by Leadbetter (1974), when allied with D(un),

Condition 2.14 (D′(un)).

lim
k→∞

limsup
n→∞

n

⌊n/k⌋

∑
j=2

P(X1 > un,X j > un) = 0.

Notice that D′(un) implies

E

[

∑
1≤i< j≤⌊n/k⌋

1(Xi > un,X j > un)

]
≤ ⌊n/k⌋

⌊n/k⌋

∑
j=2

E [1(X1 > un,X j > un)→ 0] ,

so that, in the mean, joint exceedances of un by pairs (Xi,X j) become unlikely for large n.

Verifying the conditions D(un) and D′(un) is, in general, tedious, except in the case of a

Gaussian stationary sequence. Indeed, let r(n) = cov(X0,Xn) be the auto-covariance function,

then the so called Berman’s condition r(n) logn → ∞ allied with limsupn→∞ nΦ(un)< ∞, where

Φ is the normal distribution, are sufficient to imply the both conditions D(un) and D′(un) (see

Leadbetter et al. (1983)). Let recall that the normal distribution Φ is in the Gumbel maximum

domain of attraction.
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3. The Statistical point of view of Extreme Values Theory

As mentioned in the Introduction, the cdf F is unknown and difficult to estimate beyond observed

data, so we need to extrapolate outside the range of the available observations. In this Section,

using the properties developed in Section 2, we will introduce and discuss different procedures

capable of carrying out this extrapolation.

3.1. Extrapolation to the distribution tail

Firstly, we can use the properties of the maximum Mn given in Section 2 for this extrapolation, as

presented in Subsection 3.1.1. We can also base our extrapolation to the distribution tail on the

excesses or peaks over a threshold as presented in Subsection 3.1.2. Both extrapolation procedures

are derived from asymptotic procedures that correspond to a first order approximation of the

distribution tail. Second order conditions as presented in Subsection 3.1.3 may help to improve

this approximation.

3.1.1. Using maxima

Theorem 2.3 gives the asymptotic distribution of the maximum Mn. Then we use the approximation

of the distribution of Mn by the generalized extreme value (GEV) cdf (2) to write

F(x) = P(Mn ≤ x)1/n ∼ G
1/n
γ

(
x−bn

an

)
, x → ω(F).

This gives a semi-parametric approximation of the tail of the cdf F . This approximation is

illustrated in Figure 4 for a uniform distribution and different values of n, using the theoretical

values of an, bn and γ . Let recall that the uniform distribution is in the Reversed Weibull maximum

domain of attraction, and that in this case γ =−1 (cf. Table 2).

We can equivalently approximate an extreme quantile by

F̄−1(pn) =U(1/pn)∼ bn +
an

γ

(
(− ln(1− pn)

n)−γ −1
)
, pn → 0 when n → ∞.

In these two approximations, appear three quantities an, bn and γ whose theoretical values are

only known when the cdf F is known. In practice, these quantities are unknown. an corresponds

to a shape parameter, bn to a scale parameter, and γ is the extreme value index. These parameters

would be estimated in Subsection 3.2 to produce semi-parametric estimations of the distribution

tail. In this case, this estimation would be performed using a block maxima sample.

3.1.2. Using Peaks Over a Threshold: The POT method

Modelling block maxima is a wasteful approach to extreme value analysis if other data on extremes

are available. A natural alternative is to regard observations that exceed some high threshold u,

smaller than the right endpoint ω(F) of F as extreme events.

Excesses occur conditioned on the event that an observation is larger than a threshold u. They

are denoted by (Y1, . . .) and represented in Figure 5. The excess cdf Fu defined in (5) expresses
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FIGURE 4. Comparing F̄(x) (solid line) and 1−G
1/n
−1 ((x−bn)/an) with an = n−1 and bn = 1 for n = 50 (dashed line)

and n = 100 (dotted line) for a uniform distribution F.

also as

Fu(y) = P(X ≤ u+ y|X ≥ u) = 1− F(u+ y)

F(u)
, y > 0.

Pickands’ Theorem (Pickands (1975)) implies that Fu can be approximated by a generalized

Pareto distribution (GPD) function given by (6). Parameter γ is the extreme value index, and

σ = an + γ(u− bn). In Section 3.1.1, approximating the distribution of the maximum by an

EVD leads to semi-parametric estimations of the tail of the cdf F and an extreme quantile.

Equivalently, approximating the distribution of the excesses over a threshold u may lead to the

following semi-parametric approximations. For the tail of the cdf F , we have the semi-parametric

approximation F(x)∼ 1−F(u)Hγ,σ (x−u), x → ω(F). And for an extreme quantile, we obtain

the semi-parametric approximation

F̄−1(pn)∼ u+
σ

γ

[(
p

F(u)

)−γ

−1

]
, pn → 0 when n → ∞.

Again, we have three unknown parameters γ , σ and u to be estimated (see Subsection 3.2).

Note that in practice, u < Mn corresponds to a quantile inside the sample range that can be

easily estimated by an observation (a quantile of the empirical distribution function). In practice,

we choose û = Xn−k+1,n, where k is the number of excesses. However, this does not avoid

the estimation of a parameter since k has to be accurately chosen. This choice is detailed in

Subsection 3.3.1.
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FIGURE 5. Excesses (Y1, . . .) over a threshold u.

3.1.3. Second order conditions

The first order condition (Cγ ), or equivalently (C∗
γ ), relies to the convergence in distribution of

the maximum Mn. We are now interested in the convergence rate for the distribution of the

maximum Mn to the extreme value distribution. It corresponds to derive a remainder (see for

example de Haan and Ferreira (2006) Section 2.3 or Beirlant et al. (2004a) Section 3.3) of the

limit expressed by the first order condition (Cγ ).

The function U (or the corresponding probability distribution) is said to satisfy the second

order condition if for some positive function a and some positive or negative function A with

limt→∞ A(t) = 0

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
= Ψ(x), x > 0, (8)

where Ψ is some function that is not a multiple of the function (xγ −1)/γ . Functions a and A are

sometimes referred to as respectively first order and second order auxiliary functions. However,

note that for A identically one, we obtain the first order condition (Cγ ) with Ψ identically zero. The

second order condition has been used to prove the asymptotic normality of different estimators

and to define some of the estimators detailed in the following Section.

The following result (see de Haan and Ferreira (2006) Section 2.3) gives more insights on the

functions a, A and Ψ .

Theorem 3.1. Suppose that the second order condition (8) holds. Then there exists constants c1,
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c2 ∈ IR and some parameter ρ ≤ 0 such that

Ψ(x) = c1

∫ x

1
sγ−1

∫ s

1
uρ−1duds+ c2

∫ x

1
sγ+ρ−1. (9)

Moreover, for x > 0,

lim
t→∞

a(tx)
a(t) − xγ

A(t)
= c1xγ xγ −1

γ
(10)

and

lim
t→∞

A(tx)

A(t)
= xρ . (11)

Equation (11) means that function A is regularly varying with index ρ , while equation (10)

gives a link between functions a and A. For ρ 6= 0, the limiting function Ψ can be expressed as

Ψ(X) =
c1

ρ

(
xγ+ρ −1

γ +ρ
− xγ −1

γ

)
+ c2

xγ+ρ −1

γ +ρ
.

If ρ = 0 and γ 6= 0, Ψ can be written as

Ψ(X) =
c1

γ

(
xγ log(x)− xγ −1

γ

)
+ c2

xγ −1

γ
.

Finally, for ρ = 0 and γ = 0, Ψ can be written as

Ψ(X) =
c1

2
(log(x))2 + c2 log(x).

There are several equivalent expressions for these quantities that can be found e.g. in de Haan and

Ferreira (2006) Section 2.3 or Beirlant et al. (2004a) Section 3.3.

3.2. Estimation

We present the estimation procedure both for the block maxima and peak over threshold methods.

Thus, in order to be general, we express the estimates from the original sample (X1, . . . ,Xn). We

detail different estimates including maximum likelihood, moment, Pickands, Hill, regression

and Bayesian estimates. In all cases, we focus on estimating the extreme value index γ . Other

parameters can be deduced and are not detailed.

3.2.1. Maximum likelihood estimates

Maximum likelihood is usually one of the most natural estimates, largely used owing to its good

properties and simple computation. However, in the case of extreme estimates, the support of the

EVD (or the GPD) depends on the unknown parameter values. Then, as detailed by Smith (1985),

the usual regularity conditions underlying the asymptotic properties of maximum likelihood

estimators are not satisfied. In case γ > −1/2, the usual properties of consistency, asymptotic

efficiency and asymptotic normality hold. But there is no analytic expression for the maximum
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likelihood estimates. Then, maximization of the log-likelihood may be performed by standard

numerical optimization algorithms, see e.g. Prescott and Walden (1980, 1983), Hosking (2013) or

Macleod (1989). An iterative formula is also available and presented in Castillo et al. (2004).

Moreover, remark that standard convergence properties are valuable for estimating using a

sample issued from an EVD (or a GPD). Nevertheless, Fisher-Tippet-Gnedenko Theorem 2.3

(or Pickands’ Theorem in Pickands (1975)) only guarantees that the maximum Mn (or the peaks

over threshold) is approximately EVD (or GPD). Their accuracy in the context of extremes is

more difficult to assess. However, asymptotic normality has been first proved for γ > −1/2,

see e.g. de Haan and Ferreira (2006) Section 3.4. More recently, Zhou (2009, 2010) proves the

asymptotic normality for γ >−1 and the non-consistency for γ <−1. Confidence intervals follow

immediately from this approximate normality of the estimator. But these properties are limited to

the range γ >−1 concerning the quantity to be estimated. In practice, the potential range of value

of the parameter is unknown and thus the accuracy of the estimation cannot be assessed. Then,

alternative estimates have been proposed.

3.2.2. Moment and probability weighted moment estimates

The probability weighted moments of a random variable X with cdf F , introduced by Greenwood

et al. (1979), are the quantities Mp,r,s = E (X pFr(X)(1−F(X))s), for real p, r and s. The standard

moments are obtained for r = s = 0. Moments and probability weighted moments do not exist for

γ ≥ 1. For γ < 1, we obtain for the EVD, setting p = 1 and s = 0,

M1,r,0 =
1

r+1

(
b− a

γ
[1− (r+1)γΓ(1− γ)]

)
,

and for the GPD, setting p = 1 and r = 0,

M1,0,s =
σ

(s+1)(s+1− γ)
.

By estimating these moments from a sample of block maxima or excesses over a threshold, we

obtain estimates of the parameters a,b,σ ,γ . Note that for block maxima and EVD, there is no

analytic expression for the estimate of γ that has to be computed numerically. Conversely, for

peaks over threshold and GPD, we have the following analytic expression given in Hosking and

Wallis (1987)

γ̂PWM(k) = 2− M̂1,0,0

M̂1,0,0 −2M̂1,0,1

with M̂1,0,s =
1

k

k

∑
i=1

(
1− i

k+1

)s

Yi,n.

Its conceptual simplicity, its easy implementation and its good performance for small samples

make this approach still very popular. However, this does not apply for strong heavy tails and in

this case again, the range limitation γ < 1 concerns the quantity to be estimated. Moreover, the

asymptotic normality is only valid for γ ∈]−1,1/2[, see Hosking and Wallis (1987) or de Haan

and Ferreira (2006) Section 3.6.

To overcome these drawbacks, generalized probability weighted moment estimates have been

proposed by Diebolt et al. (2007) for the parameters of the GDP distribution that exist for γ < 2
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and are asymptotically normal for γ ∈]−1,3/2[. Diebolt et al. (2008) also proposed generalized

probability weighted moment estimates for the parameters of the EVD distribution that exist for

γ < b+1 and are asymptotically normal for γ < 1/2+b, for some b > 0. However, since these

are usual estimates, as the maximum likelihood estimate, they were not been specifically designed

for extreme modelling. Conversely, the following estimates have been proposed in the context of

extreme values.

3.2.3. Hill and moment estimates

Let γ > 0, i.e. we place in the Fréchet domain of attraction. From (i) in Theorem 2.8, we have

lim
t→∞

F(tx)/F(t) = x−1/γ , for x > 1.

This means that the distribution of the relative excesses Xi/t over a high threshold t conditionally

on Xi > t is approximately Pareto: P(X/t > x|X > t)≃ x−1/γ for t large and x > 1. The likelihood

equation for this Pareto distribution leads to the Hill’s estimator (Hill (1975))

γ̂H(k) =
1

k

k

∑
i=1

(logXn−i+1,n − logXn−k,n).

We can also remark that, for γ > 0, an exponential quantile plot based on log-transformed data

(also called generalized quantile plot) is ultimately linear with slope γ near the largest observations.

This regression point of view also leads to the Hill estimate. This estimator can also be expressed

as a simple average of scaled log-spacings

Zi = i(logXn−i+1,n − logXn−i,n), j = 1, . . . ,k. (12)

The Hill estimate is designed from the extreme value theory and is consistent, see Mason

(1982). It is also asymptotically normally distributed with mean γ and variance γ2/k, see e.g.

Beirlant et al. (2004a) Sections 4.2 and 4.3. Confidence intervals immediately follow from this

approximate normality. But the definition of the Hill estimates and its properties are again limited

to some ranges of γ , i.e. γ > 0. Moreover, in many instances a severe bias can appear related

to the slowly varying part in the Pareto approximation. Furthermore, as many estimators based

on log-transformed data, the Hill estimator is not invariant to shifts of the data. And as for all

estimates of γ , for every choice of k, we obtain a different estimator, that can be very different in

the case of the Hill estimator (see Figure 6).

The moment estimator has been introduced by Dekkers et al. (1989) as a direct generalization

of the Hill estimator:

γ̂M(k) = γ̂H(k)+1− 1

2

(
1− γ̂H(k)

H
(2)
k

)
,

with

H
(2)
k =

1

k

k

∑
i=1

(logXn−i+1,n − logXn−k,n)
2.

This estimate is defined for γ ∈ IR and is consistent. But it converges in probability to γ only

for γ ≥ 0, see Beirlant et al. (2004a) Section 5.2. Under appropriate conditions including the
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second-order condition, the asymptotic normality is established in Dekkers et al. (1989) and

recalled for example in de Haan and Ferreira (2006) Section 3.5. It can be noted that the moment

estimator is a biased estimator of γ .

3.2.4. Other regression estimates

The problem of non smoothness of the Hill estimate as a function of k can be solved with the

partial least-squares regression procedure that minimizes with respect to δ and γ

k

∑
i=1

(
logXn−i+1,n −

(
δ + γ log

n+1

i

))2

.

This leads to the Zipf estimate, see e.g. Beirlant et al. (2004a) Section 4.3:

γ̂+Z (k) =

1
k ∑

k
i=1

(
log k+1

i
− 1

k ∑
k
j=1

k+1
j

)
logXn−i+1,n

1
k ∑

k
i=1 log2 k+1

i
−
(

1
k ∑

k
i=1 log k+1

i

)2
.

The asymptotic properties of this estimator are given e.g. in Csorgo and Viharos (1998).

Other refinements make use of the Hill estimate through UHi,n = Xn−i,nγ̂H(i) to reduce bias

and to increase smoothness as a function of k. Using these UH statistics instead of the ordered

statistics, the slope in the generalized quantile plot is estimated by (see Beirlant et al. (2004a)

Section 5.2)

γ̂H(k) =
1

k

k

∑
i=1

(logUHi,n − logUHk+1,n),

and another Zipf estimate based on unconstrained least square regression (see Beirlant et al. (2002,

2004a), Section 5.2)

γ̂Z(k) =

1
k ∑

k
i=1

(
log k+1

i+1
− 1

k ∑
k
j=1

k+1
j+1

)
logUHi,n

1
k ∑

k
i=1 log2 k+1

i+1
−
(

1
k ∑

k
i=1 log k+1

i+1

)2
.

One of the main interests of this last estimator is its smoothness as a function of k, which in some

sense reduces the difficult problem of choosing k (detailed in Section 3.3.1).

Concerning the shift problems of the Hill estimate, a location-invariant variant is proposed in

Fraga Alves (2002) using a secondary k-value denoted by k0 (< k)

γ̂(H)(k0,k) =
1

k0

k0

∑
i=1

log
Xn−i+1,n −Xn−k,n

Xn−k0,n −Xn−k,n
.

This estimator is consistent and asymptotically normal with mean γ and variance γ2/k0. Thus, its

variance is not increased drastically compared to the Hill estimator.
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3.2.5. Pickands Estimator

Condition (Cγ ) given in equation (4) leads to

1

log2
log

(
U(4y)−U(2y)

U(2y)−U(y)

)
∼ γ , for large y.

Taking y = (n+1)/k and replacing U(x) by its empirical version Ûn(x) = Xn−⌈n/x⌉+1,n yields the

Pickands estimator in Pickands (1975):

γ̂P(k) =
1

log2
log

(
Xn−⌈k/4⌉+1,n −Xn−⌈k/2⌉+1,n

Xn−⌈k/2⌉+1,n −Xn−k+1,n

)
.

The Pickands estimator is very simple but has a rather large asymptotic variance, see Dekkers and

de Haan (1989). Moreover, as the Hill estimate, its is amply varying as a function of k. This is

a problem as it makes crucial the choice of the fraction sample k to use for extreme estimation.

Different variants have been proposed, see e.g. Segers (2005).

3.2.6. Bayesian estimates

An alternative to frequentist estimation, as presented until now, is to proceed to a Bayesian

estimation. Some Bayesian estimates have been proposed in the literature and a review can be

find e.g. in Coles and Powell (1996) or Coles (2001), Section 9.1. These estimators are also

still under study: more recent articles present new Bayesian estimates for extreme values. For

example, Stephenson and Tawn (2004) propose to estimate the parameters of the GPD distribution

given the domain of attraction i.e. with constraints on parameter γ . Diebolt et al. (2005) propose

quasi-conjugate Bayesian estimates for the parameters of the GPD distribution in the context of

heavy tails i.e. for γ > 0. do Nascimento et al. (2011) are concerned with extreme value density

estimation using POT method and GPD distributions.

In our context of extreme values analysis, data are often scarce since we have to take into

account only extreme data, i.e. a small fraction k of the original sample. One of the main reasons

to use Bayesian estimation is the facility to include other sources of information through the

chosen prior distribution. This can be particularly important in the context of extremes given

the lack of information and the uncertainty in extrapolation. Moreover, the output of a Bayesian

analysis, the posterior distribution, directly gives a measure of parameter uncertainty that allows

to quantify the uncertainty in prediction. However, a Bayesian estimation implies the choice of

a prior distribution that can greatly influence the result. Thus, this adds another choice to the

determination of an adequate sample fraction k (detailed in Section 3.3.1).

3.2.7. Reducing bias

Classical extreme value index estimators are known to be quite sensitive to the number k of

top order statistics used in the estimation. The recently developed second order reduced-bias

estimators show much less sensitivity to changes in k, making the choice of k less crutial and

allowing to use more data for extreme estimation. These estimators are based on the second order
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condition presented in Section 3.1.3. Many of them use an exponential representation including

second order parameters.

Beirlant et al. (2004a)[Section 4.4], details that, for γ > 0 the scaled log-spacings Z j, defined

in equation (12), are approximately exponentially distributed with mean γ +(k/ j)ρbn,k. This

implies that estimating γ from the log-spacing Z j, as done with the Hill estimate, leads to a bias

that is controlled by bn,k. In the general case, it can be shown, as presented in Beirlant et al.

(2004a)[Section 5.4], that the log-ratio spacings

j log
Xn− j+1,n −Xn−k,n

Xn− j,n −Xn−k,n
, j = 1, . . . ,k−1

are approximately exponentially distributed with mean γ/(1− ( j− (k+1))γ). A joint estimate

of γ , bn,k and ρ computed from these properties, or variations of it, produces estimates of γ with

reduced bias for heavy tail distributions or in the general case. Different proposals are presented

in Beirlant et al. (2004a) Sections 4.5 and 5.7. In particular, Beirlant et al. (1999) perform a joint

maximum likelihood for these three parameters at the same level k.

Another exponential approximation is firstly used in Feuerverger and Hall (1999). They

consider that for γ > 0, the scaled log-spacings Z j, defined in equation (12), are approximately

exponentially distributed with mean γ exp(β (n/i)ρ) (with β 6= 0). They also proceed to the joint

maximum likelihood estimation of the three unknown parameters at the same level k. Considering

the same exponential approximation Gomes and Martins (2002) proposed a so-called external

estimation of the second order parameter ρ , i.e. its estimation at a level k1 higher than the level k

used to estimate γ , together with a first order approximation for the maximum likelihood estimator

of β . They then obtain quasi-maximum likelihood explicit estimators of γ and β , both computed

at the same level k, and through that external estimation of ρ . This reduces the asymptotic variance

of the γ estimator comparatively to the asymptotic variance of the γ estimator in Feuerverger and

Hall (1999), where γ , β and ρ are estimated at the same level k. Gomes et al. (2007) build on

this approach and propose an external estimation of both β and ρ by maximum likelihood both

using a sample fraction k1 larger than the sample fraction k used to estimate γ , also by maximum

likelihood. This reduces the bias without increasing the asymptotic variance, which is kept at the

value γ2/k, the asymptotic variance of Hill’s estimator. These estimators are thus better than the

Hill estimator for all k.

3.3. Control procedures

Extreme value theory and estimation in the distribution tail are greatly influenced by several

quantities. Firstly, we have to choose the tail sample fraction used for estimation. In this case,

procedures for optimal choice of this tail fraction are presented in Section 3.3.1. We can also use

graphical methods as presented in Section 3.3.2 to help to choose this tail fraction. Secondly, as

detailed in Section 2, the tail behaviour is very different depending on the value of the parameter

γ . Moreover, most of the estimates are not defined for any γ ∈ IR but only for a smaller range

of γ values. Some graphical procedures presented in Section 3.3.2 and the tests and confidence

intervals presented in Section 3.3.3 can be used to assess the value of γ , the domain of attraction

and the tail behaviour.
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3.3.1. Optimal choice of the tail sample fraction

Practical application of the extreme value theory requires to select the tail sample fraction, i.e. the

extreme values of the sample that may contain most information on the tail behaviour. Indeed,

as illustrated in Figure 6 for the Hill estimator, for a small tail sample fraction k, the γ estimate

strongly differs when changing the value of k. Moreover, this estimation also greatly varies when

changing the sample for the same value of k, indicating a large variance of the estimate for small

values of k. Conversely, for large values of k, the γ estimate presents a large bias, since the model

assumption may be strongly violated, but a smaller variance. Indeed, we observe in Figure 6 that

for large values of k, the γ estimates are close for the three simulated data sets.

FIGURE 6. Hill estimate of the extreme value index γ against different values of k and three data sets of size n = 500

simulated from a Student distribution of parameter 3 (with a true γ = 1/3).

As noticed in Section 3.2.7, the bias of the estimates is controlled by the second order parame-

ters, including parameter ρ . These additional parameters have been used to propose estimators

with smaller bias and much less sensitive to changes in k. In the general case, the optimal k-value

depends on γ and the parameters describing the second-order tail behaviour. Replacing these

second order parameters by their joint estimates yields an estimate for the optimal value of k. For

example, Guillou and Hall (2001) or Beirlant et al. (2004a) propose to choose the smallest value

of k satisfying a given criterion which they defined.

When the asymptotic mean and variance of the estimates are known, an important alternative is

to minimize the asymptotic mean squared error (AMSE) of the estimate of γ , of a tail probability

or of a tail quantile, see e.g. Beirlant et al. (2004a). As detailed in the following Section, a mean

squared error plot representing the AMSE depending on the value of k can also be useful.
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3.3.2. Graphical procedures

As noticed in Section 3.3.1, we need to select the tail sample fraction, e.g. the number of upper

extremes k, in order to apply extreme value theory for estimation purpose. Such a choice can be

supported visually by a diagram. To this aim estimates of γ (see Figure 6), or other estimates, can

be plotted against different values of k. For small values of k, the variance of the estimator is large

and the bias is small, while for large values of k, the variance of the estimator is small and the

bias is large. In between, there is a balance between the variance and the bias and we observe a

plateau, where a suitable value of k may be chosen. Quite recent estimators, see e.g. Section 3.2.7,

have the interesting property to present a relatively large plateau, that makes the choice of an

appropriate value of k, less critical. To explore this balance between the variance and the bias,

another option consists in plotting against the value of k, a mean square error computed, either

from the true value when studying an estimate with simulated data sets or from an estimation

obtained from real data sets.

As noticed above, the estimates of the extreme value index γ , and consequently the tail

estimation, can be very different depending on the selected tail sample fraction. In particular, for

large values of k, the model assumption may be strongly violated. It is then important to check the

validity of the model. Thus, we present some graphical assessments for the validity of extreme

value extrapolation. Firstly, we can use a probability plot (or PP-plot) which is a comparison of

the empirical and fitted distribution functions, that may be equivalent if the model is convenient.

For example, considering the ordered block maximum data Z(1) ≥ . . . ≥ Z(m), the PP-plot will

consist of the points

(
i

m+1
,Gγ̂m,µ̂m,σ̂m

(Z(i)) = exp

(
−
(

1+ γ̂m

Z(i)− µ̂m

σ̂m

)−1/γ̂m
))

for i = 1, . . . ,m.

We can also draw the PP-plot with the original sample. For example, in the POT case, we can

represent the points (see Figure 7) as follows

(
i

kn

,1− kn

n
H γ̂kn ,σ̂kn

(Xn−kn+i+1,n −Xn−kn+1,n)

)
for i = 1, . . . ,kn.

Secondly, we can use a quantile plot (or QQ-plot) which is a comparison between the empirical

and model estimated quantiles, that may also be equivalent if the model is convenient. For example,

the ordered block maximum data lead to plot the points

(
G−1

γ̂m,µ̂m,σ̂m

(
i

m+1

)
= µ̂m +

σ̂m

γ̂m

(
1−
(
− log

i

m+1

))−γ̂m

)
for i = 1, . . . ,m.

Again, we can also draw the QQ-plot with the original sample. For example, in the POT case, we

can represent the points (see Figure 8)

(
Xn−kn+i+1,n,H

−1
γ̂kn ,σ̂kn

(
kn

n

(
1− i

n

))
+Xn−kn+1,n

)
for i = 1, . . . ,kn.
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FIGURE 7. Example of PP-plot for the original sample.

In all the above mentioned PP or QQ-plots, the points should lie close to the unit diagonal.

Substantial departures from linearity lead to suspect that either the parameter estimation method

or the selected model (related for example to the chosen tail sample fraction) is inaccurate. A

weakness of the PP-plot is that there is an over-smoothing, particularly in the upper and the lower

tails of the distribution. Especially, the both coordinates are bounded to 1 for the largest data,

i.e. the one of greatest interest for extreme values. Then, the probability plot provides the least

information in the region of most interest. In consequence, Reiss and Thomas (2007) recommend

to use the PP-plot principally to justify an hypothesis visually. They suggest to use other tools,

including QQ-plot, whenever a critical attitude towards modelling is adopted. Indeed, a QQ-plot

achieves a better compromise between the reduction of random data fluctuations and exhibition of

special features and clues contained in the data.

There exists several other graphical tools including return level plots whose principles are

analogous to those of the PP and QQ-plots. The density plot compares the density estimated by

the model to a non-parametric estimation, e.g. histogram or kernel estimate. They are mainly

of interest when the goal is to produce an estimation of the distribution tail and are not used

when the goal is to estimate the extreme value index γ . Different variants of PP-plot or QQ-plot

include a log-transform of the coordinates of the points. For example, the Hill and Zipf estimates

(see Sections 3.2.3 and 3.2.4) are based on a generalized quantile plot. We will now focus in

particular on the Gumbel plot. It is based on the fact that in the Gumbel maximal domain of

attraction the excesses are exponentially distributed with parameter 1. The Gumbel plot consists

in plotting the quantiles − log(i/k) against the ordered excesses Xn−k+i,n −Xn−k,n as in Figure 9.

In the Gumbel domain of attraction, see left panel of Figure 9, the points should lie close to the

unit diagonal and the slope of the graph will give an estimate of the shape parameter, e.g. σ for

the GPD. In the Fréchet domain of attraction an upward curvature may appear (see central panel

of Figure 9), while a downward curvature may indicate a Reversed Weibull domain of attraction

(see left panel of Figure 9). Outliers may also be detected using this plot. This last plot is mainly

used to graphically assess the domain of attration of a data set.
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FIGURE 8. Example of QQ-plot for the original sample.

3.3.3. Tests and Confidence intervals

For many estimates, e.g. maximum likelihood or probability weighted moments, approximate

normality is established, and confidence intervals for the GEV (or GPD) parameters follow as

detailed for example in Castillo et al. (2004) Section 9.2. Direct application of the delta method

yields approximate normality for the quantile corresponding estimates, and confidence intervals

for the quantile can be deduced, as presented e.g. in Castillo et al. (2004). In other cases, the

variance of the estimates may not be analytically readily available. In such cases, an estimate of

the variance can be obtained using sampling methods such as jackknife and bootstrap methods

presented in Efron (1979), with a preference for parametric bootstrap. In this simulation context,

confidence intervals are obtained selecting empirical quantiles from the estimates (of parameters

or quantiles) computed on a large number of simulated samples.

GEV has three special cases that have very different tail behaviours. For example, a distribution

with a finite endpoint (ω(F)) cannot be in the Fréchet domain of attraction, and conversely an

unlimited distribution cannot be in the Reversed Weibull domain of attraction. Moreover, many

estimates are limited to some ranges of the extreme value index γ . Model selection then focuses

on deciding which one of these GEV particular case best fits the data. In particular, we wish

to test H0 : γ = 0 (Gumbel) versus H1 : γ 6= 0 (Fréchet or Weibull), or H1 : γ < 0 (Weilbull), or

H1 : γ > 0 (Fréchet). To this end, we can estimate γ for the GEV (or GPD) model using the

maximum likelihood and perform a likelihood ratio test as detailed for example in Castillo et al.

(2004) Sections 6.2 and 9.6. We can also use a confidence interval for γ , then check if it contains

the value 0 and finally decide accordingly.

4. Conclusion

In this article, we presented the probability framework and the statistical analysis of extreme

values. The probability framework starts with the famous Fisher-Tippett-Gnedenko Theorem 2.3
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FIGURE 9. Gumbel plot for the Gumbel (left panel), Fréchet (central panel) and Reversed Weibull (right panel) domains

of attraction.

which characterizes the three types of max-stable distributions. It remains to find the necessary

and sufficient conditions to determine the domain of attraction of a specific distribution. The

main tool to address this question is the notion of regular variation which plays an essential role

in many limit theorems. Moreover, the Fisher-Tippett-Gnedenko Theorem restricts itself to iid

random variables, so the necessity to modify the standard approach for analysing the extremes

of stationary time series for instance. The results mainly obtained by M. R. Leadbetter ends the

probability part of this article. We deliberately limited our presentation to the bases of the theory,

so the point process approach has just been alluded and we omitted the multivariate extremes (see

chapter 8 in Beirlant et al. (2004b)). The exceedances of a stochastic process, i.e. the study of

P(max0≤s≤t Xs ≥ b) for a stochastic process (Xt) are addressed in Aldous (1989), Berman (1992)

and Falk et al. (2011). In addition, Adler (2000) and Azaïs and Wschebor (2009) are mainly

dedicated to level sets and extrema of Gaussian random fields. At the heart of the Adler’s approach

stands the use of the Euler characteristic of level sets, whereas the book of Azaïs and Wschebor

relies on Rice formula, a general tool to get results on the moments of the number of crossings of

a given level by the process.

Estimating the distribution tail is a difficult problem since it implies an extrapolation. As a

sign of this difficulty, numerous estimators have been proposed, some of them very recently, and

none of them have made consensus. According to the application (and so the expected value of γ),

the customs and practices of the applied field, the quantities of interest (estimation of γ , of the

distribution tail, or of an extreme quantile) or the expected properties (low sensitivity to changes in

k, low bias, low variance) different estimators can be chosen. The choice of an estimator can also

be driven by practical considerations, since only some of the estimates proposed in the literature

are available in classical softwares. A recent list can be find in Gilleland et al. (2013) and can

help to choose estimates that are already implemented and then easy to apply. Extreme value

modelling is still an active field. Topics like threshold or tail sample fraction selection, trends and

change points in the tail behaviour, clustering, rates of convergence or penultimate approximations,

among others, are still challenging. More details on open research topics concerning univariate
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extremes are given by Beirlant et al. (2012). Other challenges concern spatial extremes or non iid

observations. Bases on spatial extremes can be found e.g. in Falk et al. (2011) or Castillo et al.

(2004). Elements on extreme analysis of non iid observations are presented in Falk et al. (2011).

The statistical analysis of extreme values needs a long observation time because of the very low

probability of the events considered. In many applications, such as complex systems with many

interactions, collecting data is difficult, if not impossible. An alternative approach consists in the

modelling of the process leading to the feared event. To achieve this, the first step requires that the

considered system is formalized and only then, some estimate can be obtained by using simulation

tools. Nevertheless, obtaining accurate estimates of rare event probabilities using traditional

Monte Carlo techniques requires a huge amount of computing time. Many techniques for reducing

the number of trials in Monte Carlo simulation have been proposed, the more promising is based

on importance sampling. But to use importance sampling, we need to have a deep knowledge of

the studied system and, even in such a case, importance sampling may not provide any speed-up.

An alternative way to increase the relative number of visits to the rare event is to use trajectory

splitting, based on the idea that there exist some well identifiable intermediate system states that

are visited much more often than the target states themselves and behave as gateway states to

reach the target states. For more details of the simulation of rare events, we suggest consulting

Doucet et al. (2001), Bucklew (2011) and Rubino and Tuffin (2009).
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