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ABSTRACT

Every visualization researcher and practitioner knows the painful
experience of a beautifully designed network layout breaking down
once the input graph scales up to realistic node and edge counts.
The resulting “hairball” suffers from cluttering and overplotting
to an extreme that renders it unusable for any practical purposes.
Since researchers have had this experience for decades, various
approaches have been developed on all stages of the visualiza-
tion pipeline to alleviate this problem. They range from filtering
and clustering techniques on the data level to modern GPU-based
techniques on the image level. This tutorial gives an overview of
these techniques and discusses their applicability and interplay in
different application scenarios. By doing so, it provides a unique
problem-oriented perspective on the field of scalable network visu-
alization, which is an area of active research today more than ever.
The tutorial serves mainly to further the understanding of network
visualization beyond the point of creating an initial layout. It thus
caters to an intermediate level audience with some basic knowl-
edge on graph layout and visualization, but it will certainly present
an interesting cross-section through the larger domains of network
visualization and graph drawing for established researchers as well.

Index Terms: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation; I.3.6 [Computing Method-
ologies]: Computer Graphics—Methodology and Techniques

1 TUTORIAL CONTENTS

Since network-structured data has become a mainstream concept
that every user of online social networks is familiar with, the in-
terest in the visualization of such data has grown – and so has the
realization that this is a challenging and computationally complex
task in particular for larger networks. The proposed 1/2 day tu-
torial for intermediate audiences discusses the different existing
approaches that address this challenge of producing or refining net-
work visualizations to scale to realistically sized data sets while
maintaining readability. It covers the topic from the two perspec-
tives of node-set-based methods (Part I) and edge-set-based meth-
ods (Part II), which are each further subdivided into methods work-
ing on the three levels of the visualization pipeline: the data level,
the geometry level, and the image level. A third part then brings the
former two parts together by discussing their interplay and applica-
tion in various domain-specific scenarios (Part III). The proposed
three parts of this tutorial are outlined in the following.

1.1 PART I: Methods Working on the Node Set

Methods that aim to reduce or refine the node set are probably the
most commonly used approaches to get a grip on large networks.
The reason is that they automatically serve the reduction of the edge
set as well, as all reduction on the nodes is reflected on their incident
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edges. In this part, a selected number of such approaches is covered
that are deemed characteristic for the particular level and widely
used in practice.

Data Level Methods. On data level, two main directions can
be taken that aim to reduce the input graph before it is laid out and
thus generates the problems mentioned above. These directions are
abstraction (e.g., clustering or partitioning) and selection (e.g., fil-
tering or contraction). Abstraction basically coarsens the level of
detail, but keeps the full extent of the network, whereas selection
cuts down on the extent, but keeps the remainder of the network
at fullest detail. This part highlights some fundamental graph clus-
tering approaches and graph partitioning approaches, and then it
shows how partitioning can be used in conjunction with clustering,
as it is done in [1, 37]. The latter is a means to alleviate some of
the problematic aspects of graph clustering, such as its long run-
time and the poor interpretability of its results. The selection part
briefly covers how it is actually performed and then focuses on the
underlying question of how to distinguish between salient nodes
and those of lesser importance to be filtered out. To this end, dif-
ferent importance metrics [15, 22] and different Degree of Interest
methods [38, 27] are introduced and discussed.

Geometry Level Methods. On geometry level, one has to dis-
tinguish between methods that merely reflect a prior reduction on
data level (e.g., layouts for clustered graphs) and those that perform
a genuine reduction on the geometry level of a previously unre-
duced graph. As examples for layout methods reflecting a reduc-
tion, techniques are presented that tie in with a hierarchical cluster-
ing by using force-directed layouts [6, 28], as well as with naviga-
tion techniques that support switching between different clustering
layers [8]. Methods that perform the desired reduction of the num-
ber of nodes on a purely geometric basis are rare. But approaches,
such as GraphDice [2], which position nodes with the same numer-
ical attributes on the same position of a scatterplot-like layout, are
a good example of how this can nevertheless be achieved.

Image Level Methods. On image level, the methods de-
scribed in the literature aim to render nodes, which are placed close
together as one larger blob or splat. This does not only reduce the
clutter, but also indicates where many nodes have been aggregated
in this way, thus giving visual cues for zooming in to investigate
these dense regions in more detail. Existing techniques range from
those that operate globally on the entire given node-link diagram,
such as Graph Splatting [41], to those that operate more locally only
in those regions where it is necessary. Example for the latter are the
density-based node aggregation [43] and the adaptive coloring by
content-aware scaling [34]. These examples will be covered in this
last part of the node-related reduction techniques, before switching
the perspective to the edge-related methods in the following part.

1.2 PART II: Methods Working on the Edge Set

In this part of the tutorial, we will discuss algorithms and interac-
tive techniques to reduce edge clutter in visualizations. These tech-
niques mainly rely on edge-bundling algorithms which have been
subject to an increased interest in active research and a number of
improvements and enhancement in recent years. In the same way
as the first part of the tutorial, this part is divided into the three



levels on which edge simplification can occur: the data level, the
geometry level, and the image level.

Data Level Methods. On data level, edges can be filtered or
aggregated. Filtering techniques remove edges with given criteria,
whereas aggregation techniques merge edges having similar seman-
tics.

Aggregation and edge clustering methods are given in [7]. Inter-
active systems, such as Node Trix, compact dense subgraphs into
matrix representations [14, 13]. In Ploceus [26], one can display
networks from different perspectives, at different levels of abstrac-
tion, and with different edge semantics.

Regarding filtering techniques, direct queries can filter out edges
with multivariate criteria. Edges can be filtered with Centrality
Based Visualization of Small World Graphs [40], or explored with
spanning tree as used in TreePlus [25].

Geometry Level Methods. On geometry level, dense edge vi-
sualizations can be uncluttered by using edge bundling techniques.
Edge bundling techniques trade clutter for overdraw by routing geo-
metrically and semantically related edges along similar paths. This
improves readability in terms of finding groups of nodes related to
each other by tracing groups of edges (the bundles) which are sep-
arated by whitespace [11]. Dickerson et al. merge edges by reduc-
ing non-planar graphs to planar ones [4]. The first edge bundling
technique was the flow map visualizations which produce a binary
clustering of nodes in a directed graph representing flows to route
curved edges along [29]. Flow maps’ control meshes are used by
several authors to route curved edges, e.g., [30, 42].

These techniques were later generalized into edge bundling ap-
proaches that use a graph structure to route curved edges. Holten pi-
oneered edge bundling for compound graphs by routing edges along
the hierarchy layout using B-splines [16]. Gansner and Koren bun-
dle edges in a circular node layout similar to [16] by area optimiza-
tion metrics [12]. Control meshes can also be used for edge clus-
tering in graphs, e.g., [30, 42]; a Delaunay-based extension called
geometric-based edge bundling (GBEB) [3]; and “winding roads”
(WR) that use Voronoi diagrams for 2D and 3D layouts [24, 23].

The most popular technique is the force-directed edge layout
technique which use curved edges to minimize crossings, and
implicitly creates bundle-like shapes [5]. Force-directed edge
bundling (FDEB) creates bundles by attracting control points on
edges close to each other [17], and was adapted to separate bun-
dles running in opposite directions [35]. The MINGLE method
uses multilevel clustering to significantly accelerate the bundling
process [11].

Computation times for larger graph struggle with the algorithmic
complexity of the edge bundling problem. This makes scalability
the major issue when using edge bundling techniques. The latest
techniques use therefore the image level to bundle edges.

Image Level Methods. Thanks to the recent improvements
regarding graphic hardware and its flexible usage, image level
methods are nowadays very popular. Graphic cards can be used
to improve rendering aesthetics and to address scalability issues.

Several techniques exist for rendering and exploring bundled lay-
outs, e.g., edge color interpolation for edge directions [16, 3]; trans-
parency or hue for local edge density, i.e., the importance of a bun-
dle, or for edge lengths [24]. Bundles can be drawn as compact
shapes whose structure is emphasized by shaded cushions [36, 31].
Graph splatting visualizes node-link diagrams as continuous scalar
fields using color and/or height maps [41, 21].

Several techniques exists to improve scalability based on im-
age level. Skeleton-based edge bundling (SBEB) use the skeletons
or medial axes of the graph drawing’s thresholded distance trans-
form as bundling cues to produce strongly ramified bundles [9].
To explore crowded areas where several bundles overlap, bundled
layouts can be interactively deformed using semantic lenses [18].

Hurter et al. use a pixel based bundling method to explore dynamic
graphs [20].

1.3 PART III: Application Scenarios and Summary

In this final part, we will bring the methods of the first two parts
together by discussing which of them to apply and how to go about
it for a few selected application cases. In particular, this part will
highlight how to combine edge and node simplification under the
different constraints imposed by the application domains. For this
part, we rely mostly on our own experience in applying these tech-
niques to trajectory exploration, software revision analysis, and
stream graph exploration [21, 18, 20], as well as to social network-
ing [39].

At the end of this part, we will briefly summarize the key points
of our tutorial and also emphasize on the open challenges in this
area, so that starting graduate students will have some pointers
in which direction to look to make a contribution. Among other
points, these challenges include scalability issues w.r.t. screen
space, computation time, but also interaction, as well as compati-
bility issues among the individual approaches, which currently limit
their concerted use.

2 TUTORIAL ORGANIZATION AND COURSE MATERIAL

The half-day tutorial will be held as a presentation using pictures,
videos, and live demos from literature as well as the presenters’
own work. We are going to spend about 75 minutes for each of Part
I and Part II, and the remaining 1 hour for Part III and answering
further questions. The participants will be provided with tutorial
notes including an extensive literature list on the subject.

After completing this tutorial, participants can expect to have
gained a comprehensive overview of existing approaches for mak-
ing visualizations more expressive and more effective for communi-
cating larger networks. Through the selected application scenarios,
the participants will also get a grasp on when and how to utilize
these techniques in practice. In addition, concrete suggestions on
issues of realizing and implementing the discussed algorithms from
the experience of the presenters will be given.

3 INSTRUCTOR INFORMATION

Hans-Jörg Schulz received his PhD from the University of
Rostock in 2010, where he is now a post-doctoral researcher. With
his expertise in graph visualization, his perspective on showing
relationships in data stems from a graph drawing point of view.
His main interest lies in visualizing hierarchical relationships in
data [32, 33]. This naturally includes compact tree visualizations
for reducing clutter and overplotting [34] and hierarchically
clustered graphs [39], but also extends to the recursive refinement
of dynamic network visualization [13]. More on his work can be
found at http://hjschulz.net

Christophe Hurter received his PhD from the University of
Toulouse in 2010. He is associate professor at the Interactive
computing laboratory at the French national aviation university
(ENAC, Ecole Nationale de l’Aviation Civile) in Toulouse France.
His research interests lie in the research areas of information visu-
alization and Human-Computer Interaction, particularly including
the visualization of multivariate data in space and time, the design
of scalable visual interfaces and the development of pixel based
rendering techniques. He published several papers on new scalable
edge bundling techniques [19, 10], and real-time interaction
techniques with edge bundling [18, 20]. More on his work can be
found at http://www.recherche.enac.fr/˜hurter/
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