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Abstract—This paper focuses on the estimation of the aircraft
mass in ground-based applications. Mass is a key parameter
for climb prediction. It is currently not available to ground-
based trajectory predictors because it is considered a competitive
parameter by many airlines. There is hope that the aircraft mass
might become widely available someday, but in the meantime it
is possible to estimate an equivalent mass from the data already
available, assuming the thrust to be known (maximum or reduced
climb thrust for example).

In this paper, we compare the performances of two mass esti-
mation methods proposed in recent publications. Both methods
estimate the aircraft mass by fitting the modeled energy rate
(i.e. the power of the forces acting on the aircraft) with the
energy rate observed at several points of the past trajectory.
The first method, proposed by Schultz et al. ([1]), dynamically
adjusts the weight parameter so as to fit the energy rate, using an
adaptive sensitivity parameter to weight each observation. The
second method, introduced in one of our previous publications
([2]), estimates the mass by minimizing the quadratic error on
the observed energy rate, taking advantage of the polynomial
expression of the modeled power when using the BADA model.
The robustness of both methods to the observation errors is
assessed, using simulated data with various distributions of the
noise added to the observed state variables. The results show that
both methods are able to find mass estimates that are very close
to the “actual” mass, with slightly better performances for the
least squares method.

Keywords: aircraft trajectory prediction, mass estimation,

BADA, energy rate, specific power

INTRODUCTION

With the emergence of new operational concepts ([3], [4])

centered on trajectory-based operations, predicting aircraft

trajectories with great accuracy has become a key issue for

most ground-based applications in Air Traffic Management

and Control (ATM/ATC). Some of the most recent algorithms

applied to ATM/ATC problems require to test a large number

of alternative trajectories. As an example, in [5] an iterative

quasi-Newton method is used to find trajectories for departing

aircraft, minimizing the noise annoyance. Another example

is [6] where Monte Carlo simulations are used to estimate the

risk of conflict between trajectories, in a stochastic environ-

ment. Some of the automated tools currently being developped

for ATC/ATM can detect and solve conflicts between trajecto-

ries, using Genetic Algorithms ([7]1), or Differential Evolution

1These algorithms are at the root of the strategic deconfliction through
speed adjustments developped in the European ERASMUS project ([8]). A
more recent application is the SESAR 4.7.2 (Separation Task in En Route

Trajectory-based Environment) project, where lateral and vertical maneuvers
are also used.

or Particle Swarm Optimization ([9]).

To be efficient, all these methods require a fast and accurate

trajectory prediction, and the capability to test a large number

of “what-if” trajectories. Such requirements forbid the sole

use of on-board trajectory prediction, which is certainly the

most accurate, but is not sufficient for these most promising

applications. Even with the existing (or future) datalink capa-

bilities that could transmit the on-board prediction to ground

systems, there remains a need for a fast and accurate ground-

based prediction.

Most trajectory predictors rely on a point-mass model to

describe the aircraft dynamics. The aircraft is simply modeled

as a point with a mass, and the second Newton’s law is

applied to relate the forces acting on the aircraft to the

inertial acceleration of its center of mass. Such a model is

formulated as a set of differential algebraic equations that

must be integrated over a time interval in order to predict the

successive aircraft positions, knowing the aircraft initial state

(mass, current thrust setting, position, velocity, bank angle,

etc.), atmospheric conditions (wind, temperature), and aircraft

intent (thrust profile, speed profile, route).

Unfortunately, the data that is currently available to ground-

based systems for trajectory prediction purposes is of fairly

poor quality. The speed intent and aircraft mass, being con-

sidered competitive parameters by many airline operators, are

not transmitted to ground systems. The actual thrust setting

of the engines (nominal, reduced, or other, depending on

the throttle’s position) is unknown. There are uncertainties

or noise in the Weather and Radar data. Some studies ([10],

[11], [12]) detail the potential benefits that would be provided

by additional or more accurate input data. In other works,

the aircraft intent is formalized through the definition of an

Aircraft Intent Description Language ([13], [14]) that could

be used in air-ground data links to transmit some useful data

to ground-based applications. There is hope that, in the future,

all the necessary data required to predict aircraft trajectories

will be available. In the meantime, we propose to learn some

of the unknown parameters of the point-mass model – typically

the aircraft mass – from the data that is already available.

Focusing on the aircraft climb, we are interested in this

paper in estimating the aircraft mass, which is one of the key

parameters for climb performance, using the past trajectory

points. This approach, where some unknown parameters are

adjusted by fitting the model to the observed past trajectory,

is not new. The past publications following this path ([15],

[16], [17], [18], [1], [2], [19]) propose several methods, with
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different choices for the adjusted parameter (mass, or thrust,

for example), the modeled variable that is fitted on past

observations (rate of climb, energy rate), and the algorithm

that is applied (stochastic method, adaptive mechanism, least

squares, etc.).

Among the publications dealing with mass estimation, let us

cite [15], where Warren and Ebrahimi propose an equivalent

weight as a workaround to use a point-mass model without

knowing the actual aircraft mass. Nominal thrust and drag pro-

files are assumed. The equivalent mass is found by minimizing

the gap between the computed and observed vertical rates. A

second study ([16]) raises doubts about the reliability of the

vertical rate for this purpose, and suggests to use the energy

rate instead. The proposed method is tested on simulated

trajectories only. In more recent works, Schultz, Thipphavong,

and Erzberger ([1]) introduce an adaptive mechanism where

the modeled mass is adjusted by fitting the modeled energy

rate with the observed energy rate. This adaptive method

provides good results on simulated traffic and the authors plan

to try it on real data. In [2], we use a Quasi-Newton algorithm

(BFGS) combined to a mass estimation method to learn the

thrust profile minimizing the error between the modeled and

observed energy rate. The thrust law, once learned on historical

data, is used to predict the future trajectory of any new

aircraft, together with the mass estimated on the past trajectory

points. This method has been tested on two months of real

data, showing good results. Concerning the mass estimation

method, we showed that, when using the BADA2 model of the

forces (or a similar model), the aircraft mass can be estimated

at any past point of the trajectory by solving a polynomial

equation, knowing the thrust setting at this point. When using

several points, and assuming a constant mass over the whole

trajectory segment, the mass can be estimated by minimizing

the quadratic error on the energy rate.

In the current paper, we propose an improvement of this

least squares method. The mass is no longer assumed to

be constant during the climb. It follows the fuel law given

by the Eurocontrol Base of Aircraft DAta (BADA) model.

We compare the performances of the two mass estimation

methods: the proposed least squares method and the adaptive

mechanism introduced by Schultz et al. in [1]. As the actual

aircraft mass is not available in the real data that we have

collected, we use simulated trajectories. In order to mimic the

diversity and volatility of the real Radar tracks, the simulated

trajectories are produced by sampling a number of parameters

(mass, calibrated airspeed, Mach number, temperature differ-

ential) according to some given distributions, and a Gaussian

noise is added independently to some state variables (altitude,

true airspeed, rate of climb, acceleration, temperature) for

each trajectory point. The robustness of both mass estimation

methods to the noise added to each state variable is studied.

The rest of this paper is organized as follows: Section I

describes the forces’ model and the equations governing the

aircraft dynamics. Section II describes the two mass estimation

methods. The data and experimental setup are detailed in sec-

tion III, and the results are shown and discussed in section IV,

2BADA: the Eurocontrol Base of Aircraft DAta

before the conclusion.

I. MODELS AND EQUATIONS

A. Aircraft Dynamics with the Effect of Wind

Ground-based trajectory predictors used for air traffic man-

agement and control purposes usually rely on a simplified

point-mass model to predict aircraft trajectories. In such a

model, all forces acting on the aircraft body are exerted at the

center of mass, making several simplifying approximations.

The inertial moments and angular accelerations of the aircraft

around its center of gravity are not included in the model.

The aircraft is modeled as a point of mass m, subject to the

second Newton’s law that gives us the inertial acceleration
−→ai =

d
−→
Vi

dt
=

−̇→
Vi of the center of mass (the dot above a vector

denotes the time derivative of this vector):

m
−̇→
Vi =

−→
Thr +

−→
D +

−→
L +m−→g (1)

In equation (1), mass is considered a stationary variable3 for

what concerns its impact on the aircraft dynamics. At a larger

scale, though, the fuel burn and the consequent loss of mass

must be taken into account when integrating the equations

to predict the future trajectory. Concerning the forces, it is

assumed that the thrust
−→
Thr exerted by the aircraft engines is

aligned to the airspeed vector
−→
Va, and in the same direction.

The drag
−→
D exerted by the relative wind on the flying airframe

is also aligned to
−→
Va, by definition, and in the opposite

direction. The lift force
−→
L caused by the motion of the

airframe through the air is perpendicular to these vectors and

in the plane of symmetry of the aircraft. The flight is assumed

to be symmetric and there is no aerodynamic sideforce. The

effects of Earth rotation on the aircraft dynamics are neglected

(flat Earth approximation).

The effect of wind
−→
W on the aircraft velocity and accelera-

tion cannot be neglected, however. It can be written as follows:

−→
Vi =

−→
Va +

−→
W (2a)

−→ai =
−̇→
Va +

−̇→
W (2b)

We can project equation (1) onto the airspeed vector
−→
Va

axis. This gives us the following equation, where “.” denotes

the dot product of two vectors:

m
−→
Va.

d
−→
Vi

dt
=
(
−→
Thr +

−→
D +

−→
L +m−→g

)

.
−→
Va (3)

Combining equations (2) and (3), and introducing h the

geodetic height of the aircraft, and ḣ = dh
dt

the inertial

vertical velocity (counted positive upward), equation (3) can be

reformulated as a law governing the total energy rate, denoting

WUp the upward component of the wind:

(
Thr −D

m

)

Va

︸ ︷︷ ︸

specific power

= VaV̇a + gḣ
︸ ︷︷ ︸

specific energy rate

+ (
−̇→
W.

−→
Va − gWUp)

︸ ︷︷ ︸

wind effect

(4)

3We assume in fact that d
dt
(mVi) = mV̇i, and neglect the impact of ṁ

on the acceleration.



3

Expressing the power of the forces acting along the true

airspeed axis, and the total energy (kinetic and potential) of

the aircraft gives us an interesting insight to equation (4). We

can see how the aircraft dynamics are governed by the specific

power (i.e. power per unit of mass) and energy rate:

Power = (Thr −D)Va (5a)

Energy =
1

2
mV 2

a +mgh (5b)

Power

m
=

d

dt

(
Energy

m

)

+ (
−̇→
W.

−→
Va − gWUp) (5c)

For historical and technical reasons, the geodetic altitude

h and the inertial vertical velocity ḣ are not much used in

air traffic control operations. Instead, a pressure altitude Hp

(also called geopotential pressure altitude in [20]) is computed

on board the aircraft and transmitted to ground systems by

Mode-C or Mode-S transponders. The relationship between

the pressure altitude and the geodetic altitude is the following,

with T denoting the air temperature, and ∆T is the difference

with the temperature that would occur using the International

Standard Atmosphere (ISA) model:

gḣ = g0

(
T

T −∆T

)
dHp

dt
(6)

Neglecting the vertical component of the wind WUP and

using the relationship between ḣ and Ḣp stated in equation (6),

equation (4) can be re-written as follows, introducing
dHp

dt
,

the rate of climb or descent (ROCD), g0 the gravitational

acceleration at mean sea level, and a corrective factor related

to the temperature:

Thr −D

m
Va

︸ ︷︷ ︸

specific power

= Va

dVa

dt
+ g0

(
T

T −∆T

)
dHp

dt
︸ ︷︷ ︸

specific energy rate

+
d
−→
W

dt
.
−→
Va

︸ ︷︷ ︸

wind effect

(7)

Considering an aircraft trajectory picked up from historical

data, the energy rate and wind effect (right-hand part of

equation (7)) can be computed at any point of the observed

trajectory. The specific power (left-hand part) is a function of

the mass m and the thrust and drag forces (Thr and D).

In the rest of this paper, we focus on estimating the mass

for climbing aircraft, using equation (7). In the two methods

presented in section II, the mass is adjusted so that equation (7)

is satisfied. This requires a model of the thrust and drag forces.

B. Modeling the Forces

Using equation (7) to actually compute a trajectory requires

a model of the aerodynamic drag D of the airframe flying

through the air. We also need a computational model of the

engines’ thrust Thr. In our experiments, we used version 3.9

of the Eurocontrol Base of Aircraft Data (see [21]) to compute

these forces.

The BADA model provides different parametric models of

the thrust force Thr for jet, turboprop, and piston engines (see

section 3.7 of [21]). These models are tuned by regression

using manufacturers’ data. They allow us to compute the

standard maximum climb thrust Thrmax climb as a function of Hp,

∆T , and Va:

Thrmax climb = f1(Hp, Va,∆T ) (8)

The dimensionless lift and drag coefficients are defined as

follows:

CL =
2mg0

ρVaS cosΦ
(9a)

CD = aD + bDC2
L (9b)

where S is the wing surface, Φ is the bank angle, and aD
and bD are values depending on the phase of flight (landing

gear up or down, flaps extended, etc.).

Given these coefficients (experimentally found), the equa-

tion for the drag D is the following:

D =
CDρV 2

a S

2
(10)

With the atmosphere model and the equations of [20], the

air density ρ and temperature T can be expressed as a function

of the temperature differential ∆T . So the drag is as a function

of the aircraft mass m, the true air speed Va, the geopotential

pressure altitude Hp and the temperature differential ∆T .

Moreover, one can notice that the drag D is a polynomial

of the second degree with respect to the mass that has the

following form:

D = f2(Hp, Va,∆T ) +m2
× f3(Hp, Va,∆T,Φ) (11)

C. Fuel consumption

A fuel consumption model is also required when computing

a full trajectory. In climbing phase, the fuel consumption is

modeled by equation (12), where the mass variation dm
dt

is

described as a function of Hp, Va and ∆T .

dm

dt
= −f4(Va, Hp,∆T ) (12)

II. MASS ESTIMATION

The two mass estimation methods compared here rely on the

idea of adjusting the mass m in order to equalize the specific

power and the specific energy rate.

In order to be more specific, let us introduce P and Q,

defined as follows, considering equations (5) and (7) :

P = Power −m×

[
d

dt

(
Energy

m

)

+ (
−̇→
W.

−→
Va)

]

︸ ︷︷ ︸

Q

(13a)

Q = Va

dVa

dt
+ g0

(
T

T −∆T

)
dHp

dt
+

d
−→
W

dt
.
−→
Va (13b)

The quantity Q is the sum of the energy rate and wind effect.

It can be computed at any point of the past trajectory using

the recorded Radar track, Weather data, and equations (2).

Considering the forces model given by equations (8) and (10)

in section I-B, only the mass m is missing to compute the

power. Thus, at each point i of the trajectory, the power is
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a function Power(mi) of the mass mi at point i. The total

energy model equation (7) becomes:

Pi(mi)

mi

= 0 ⇔ Poweri(mi) = miQi (14)

A. The Adaptive Method

The idea of the adaptive method introduced by Schultz et

al. in [1] is to dynamically adjust the weight mg so that the

modeled energy rate (i.e. the power of the forces acting on the

aircraft) fits the observed energy rate. The weight is adjusted

for each new trajectory point and the weight update depends

on a sensitivity parameter which is dynamically adapted,

comparing the energy rate error of the new observation to

the average value over the five last points. Small values of

the sensitivity parameter compensate for the volatility of radar

track data, giving less importance to the outliers (i.e. the points

that differ too much from the average), whereas high values

allow the algorithm to better follow the energy rate variations.

Let us now describe more formally the two parts of this

adaptive algorithm: the weight adjustment and the sensitivity

parameter adaptation. Due to our choice of notations and to the

form of our equation (7), and also because we adjust the mass

m instead of the weight mg, our description of the adaptive

method is slightly different from the one given by Schultz et

al.. Otherwise, the mechanism is exactly the same.

In the dynamic weight adjustment, the power at point i

is modeled using the previous mass mi−1. The current mass

mi is then obtained by applying equation (14), using Qi the

energy rate and wind effect observed at point i:

mi =
Poweri(mi−1)

Qi

(15)

Introducing Qi −
Poweri(mi−1)

mi−1
= −

Pi(mi−1)
mi−1

, the error

made on the energy rate when modeling the power at point i

using the previous mass mi−1, equation (15) can be rewritten

as follows:

mi =
Poweri(mi−1)

Qi

=
Poweri(mi−1)

Poweri(mi−1)
mi−1

+ (Qi −
Poweri(mi−1)

mi−1
)

=
1

1
mi−1

+ 1
Poweri(mi−1)

(

Qi −
Poweri(mi−1)

mi−1

)

︸ ︷︷ ︸

error on the energy rate when using mi−1

=mi−1

(

1−
Pi(mi−1)

Poweri(mi−1)

)−1

(16)

For the reasons explained at the begining of this section,

a sensitivity parameter βi is introduced in the update term of

equation (16). Finally, the mass is updated using the following

equation:

mi = mi−1

[

1 + βi

(
−Pi(mi−1)

Poweri(mi−1)

)]−1

(17)

The sensitivity parameter βi is adapted by comparing the

observed variations of the energy rate, given by Pi(mi−1) in

equation (17), to the average variation over the five previous

points. The adaptation rule given in [1] is the following, where

∆Ėi =
Pi(mi−1)
mi−1gVa

(with our notations):

if i > 0 and ∆Ėi > 0.0001

and

∣
∣
∣
∣
∣

∆Ėi −∆Ėavg

∆Ėavg

∣
∣
∣
∣
∣
< 3

then

βi = max(0.205, βi−1 + 0.05)

else

βi = 0.005

(18a)

In equation (18), ∆Ėavg is the average value of ∆Ėi over the

last five previous points. Note that there might be less than

five points when the algorithm “warms up”, at the beginning

of the trajectory.

With this mechanism, if ∆Ėi is repeatedly high in the

same order of magnitude, βi will increase, strengthening the

adaptation. Otherwise, βi has a low value. As a consequence,

an isolated high ∆Ėi does not have a great impact on

the adaptation. This improves the robustness of this mass

estimation process.

The algorithm starts with an initial mass m0 (typically the

reference mass given by the BADA model). The mass variation

at each iteration is bounded: in our experiments, it is limited

to 2%4 of the reference mass. During the whole process,

the estimated mass is bounded within 80% and 120% of the

reference mass.

B. Least Squares Method

In the adaptive method presented in section II-A, the mass

is iteratively updated with each new trajectory point. The

algorithm starts with an initial mass m0 and ends up with

a final mass mn after n iterations.

In the least squares method, the mass is directly estimated

by minimizing the sum of the squared errors over n points.

The total error E being minimized is the following:

E(m1, . . . ,mn) =

n∑

i=1

(
Poweri(mi)

mi

−Qi

)2

(19a)

=

n∑

i=1

(
Pi(mi)

mi

)2

(19b)

Note that in equation (19), the error function is related

to the modeled specific power
Poweri(mi)

mi
(i.e. power per

unit of mass), and not the power (which might have given

simpler expressions later on in this section). This choice is

motivated by the trajectory prediction purpose of the mass

estimation: when trying to predict the pressure altitude Hp and

true airspeed Va of a climbing aircraft, one has to integrate the

total energy model equation (7), or alternatively an equation in

4This value differs from the one given in [1], but it gives better results in
our experiments.
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the form d
−→
V
dt

=
∑−−−−−→

Forces
m

. The final expression of this integral

involves the specific power, not the power.

We introduced the least squares mass estimation method in

[2], where it was associated to another method in order to learn

the thrust profile of a given aircraft type from historical data.

When considering fresh trajectory inputs, the learned thrust

profile and the mass estimated on the past trajectory points

were used to predict the future values of the energy rate. In

a more recent publication currently under review, we showed

that the proposed method could improve the altitude prediction

accuracy up to 50% when compared to the standard BADA

model. These studies were conducted on real data (Mode-C

Radar tracks and Weather data).

In these previous works, we assumed that the mass m

remains constant over the n points used for the estimation.

We now improve the proposed method by taking the fuel burn

into account. The mass variation is ruled by equation (12) (see

section I-C).

With this equation, the mass mi at point i and time ti can

be written as a simple function of the final mass mn, knowing

the values of the state variables (temperature, altitude, velocity,

etc) observed at point i. The mass at point i is the following,

with f4 modeling the fuel burn:

mi = mn +

tn∫

ti

f4(Va(t), Hp(t),∆T (t))dt (20a)

≃ mn +

n−1∑

k=i

f4(tk+1) + f4(tk)

2
(tk+1 − tk) (20b)

= mn + δi (20c)

The quantity δi =
n−1∑

k=i

f4(tk+1)+f4(tk)
2 (tk+1 − tk) can be

computed from the available data for every point i of the

observed past trajectory. Therefore, the sum of squares error

E can be rewritten as follows:

P̃i(mn) = Pi(mn + δi) (21a)

E(mn) =
n∑

i=1

(

P̃i(mn)

(mn + δi)

)2

(21b)

The aircraft mass is estimated by minimizing E(mn) given

by equation (21b). This minimization can be done efficiently

when using the model of forces provided by BADA. With this

model, the power (Poweri(mi)) can be expressed as a second-

degree polynomial of the mass mi, using the functions f1, f2,

and f3 (see section I-B for the model of the forces):

Poweri(mi) =−m2
i × f3(Hpi

, Vai,∆T i,Φi)

+ f1(Hpi
, Vai,∆T i)

− f2(Hpi
, Vai,∆T i)

(22)

Consequently, P̃i(mn) = Poweri(mn+δi)−(mn+δi)Qi is

a second-degree polynomial of the final mass mn. The overall

error E is a sum of rational terms (i.e. ratios of polynomial

functions). The minimum m∗ of this function satisfies the

equation E ′(m∗) = dE
dm

(m∗) = 0. When introducing a

common denominator in E ′, the equality E ′(m∗) = 0 becomes

a polynomial equation of degree at most 3(n−1)+4. Solving

such a high degree polynomial might be a difficult task due

to numerical issues [22]. Therefore, instead of minimizing

E we minimize an approximation Eapprox as defined by

equation (23) below:

Favg(mn) =
1

n

n∑

i=1

(mn + δi) (23a)

Eapprox(mn) =

n∑

i=1

(

P̃i(mn)

Favg(mn)

)2

(23b)

With this approximation, the derivative of the error function

is given by the following equation (24):

E
′
approx(mn) =

2

(Favg(mn))
3

n∑

i=1

P̃i(mn)
[

P̃i

′

(mn)Favg(mn)− P̃i(mn)Favg
′(mn)

]

(24)

With the above equation (24), the optimal mass m∗ must

satisfy the fourth-degree polynomial equation (25) below, in

order to cancel out E ′
approx.

n∑

i=1

P̃i(m
∗)
[

P̃i

′

(m∗)Favg(m
∗)− P̃i(m

∗)Favg
′(m∗)

]

= 0

(25)

One can solve analytically this fourth-degree polynomial

equation using Ferrari’s method. However, even for a third-

degree polynomial, analytical methods might not be numeri-

cally stable [23]. In our experiments, we used the numerical

method5 provided by the GNU Scientific Library. This nu-

merical method appears to be as fast as the analytical method

in our experiments. Among the four potential solutions given

by this numerical method, we select the solution6 in ]0; +∞[
minimizing Eapprox. The obtained value is the estimated

aircraft mass m∗ at point n.

III. DATA AND EXPERIMENTAL SETUP

A. Aircraft Trajectories

The two mass estimation methods (adaptive and least

squares) are tested on simulated trajectories. The version

3.9 of the BADA model is used to produce 4-minute long

climb segments, assuming a max climb thrust. The synthesized

trajectories start at altitude 12,000 ft. Three different aircraft

types are considered: the A320 which is a short-range aircraft,

the A333 which is a medium-range aircraft, and the B744

which is a long-range aircraft.

When the thrust law is fixed, the climb trajectory depends

only on the mass, the speed profile (CAS,Mach) and the

temperature differential ∆T .

5This method of the GNU scientific library uses a balanced-QR reduction
of the companion matrix.

6Actually, under reasonable hypotheses on the observed variables, one can
prove that there is exactly one solution in ]0; +∞[ that cancels out E ′

approx.
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Our set of simulated trajectories is created by sampling

these four parameters independently, using uniform laws. The

parameters of these uniform laws are summarized in table I.

Such a uniform distribution is not realistic, but it is sufficient

for our purpose, which is to test the robustness of both

methods on a variety of trajectories. The useful state variables

T,Hp, VTAS ,
dHp

dt
, dVTAS

dt
are assumed to be observed every

12 seconds, giving us 21 points per trajectory. Each dataset

used in our experiments comprises 1000 climb segments of

21 points.

parameter distribution

CAS CASref + uniform([−30; 30])
Mach Machref + uniform([−0.03; 0.03])
∆T uniform([−20; 20])
mass massref × uniform([0.8; 1.2])

Table I: The distribution of the parameters used to generate

our trajectories.

B. Adding a Gaussian Noise

Assuming we used only the BADA model, without noise,

to produce our dataset, the resulting trajectories would be

smooth. Such trajectories would not be very representive of

the real-life radar data, which is much more noisy and volatile.

Our aim is to assess the robustness of both methods to

the observation errors. To that purpose, we add a Gaussian

noise to the state variables associated to each trajectory point.

This is done independently for each of the following five state

variables: temperature T , pressure altitude Hp, true airspeed

Va, acceleration dVa

dt
, and rate of climb

dHp

dt
.

We create separate trajectory datasets for these five vari-

ables, adding a Gaussian noise to only one variable in a given

dataset. For a given climb segment, the random draws are

made in an independent way: we draw a random noise from

the chosen distribution for each trajectory point. Several values

of the standard deviation of the Gaussian distribution are tested

for each variable. For instance, if we want to test n different

values of the standard deviation for each observed variable,

we create 5× n datasets of 1000 trajectories each.

IV. RESULTS

A. Robustness to Observation Errors

The results are assessed by computing the root mean square

of the relative error, for each dataset. This relative error for

a given trajectory is simply 100 ×
massestimated−massactual

massactual
.

The root mean square errors (RMSE) are plotted on figures 1

to 5 for each variable and for different values of the Gaussian

noise’s standard deviation.

Concerning figures 2 to 5, the ranges chosen for the standard

deviation are inspired from the worst cases of the Eurocontrol

document [24]. Assuming a number of primary and secondary

surveillance radars, this document describes different scenar-

ios, with the associated errors in position and velocity.

Looking at figures 1 to 5, we see that both methods estimate

the mass with good accuracy. In all cases, the RMSE increases

with the input noise, which is not very surprising. From the

maximum ranges observed for the RMSE (only a few percents

in all cases), we can say that both methods are quite robust
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Figure 1: Sensitivity of the mass estimation methods to the

noise in the temperature T .
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Figure 2: Sensitivity of the mass estimation methods to the

noise in the pressure altitude Hp.

to the noise introduced in the temperature, altitude, velocity,

acceleration, and rate of climb.

Surprisingly, the estimated mass is relatively insensitive to

the noise in the pressure altitude Hp, according to the RMSE

values displayed on figure 2. This is especially true for the

least squares method.

The errors on the true airspeed Va, acceleration dVa

dt
and

rate of climb
dHp

dt
are more sensitive to the input error, as

can be seen on figures 4 to 5. The highest errors are observed

when introducing a noise in the acceleration and rate of climb.

This is not very significant, however, as we may have chosen

too high standard deviations for the noise introduced in these
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Figure 3: Sensitivity of the mass estimation methods to the

noise in the true airspeed Va.
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Figure 4: Sensitivity of the mass estimation methods to the

noise in the true airspeed dVa

dt
.

variables. For example, a standard deviation of 0.2 kts.s−1 for

the acceleration is a high value: the acceleration dVa

dt
in our

experiments is in a range from −0.08 kts.s−1 to 0.44 kts.s−1

for the three considered aircraft types.

The behavior of the two methods is consistently the same

for all aircraft types, even if some differences can be observed

between the three aircraft types that were tested: the mass

estimation is slightly more sensitive to the noise for short-

range aircraft than for long-range aircraft.

In all figures, the least squares methods exhibits a better

RMSE than the adaptive method, except maybe for the noise

in the temperature, where the performances of the two methods
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Figure 5: Sensitivity of the mass estimation methods to the

noise in the rate of climb
dHp

dt
.

are fairly close. For the true airspeed Va, acceleration dVa

dt
, and

rate of climb
dHp

dt
, the RMSE obtained with the least squares

method is about 20 to 50 percent less than the RMSE obtained

with the adaptive method. When considering the Hp variable,

the order of magnitude of the difference in RMSE goes up to

60 to 70 percent in favor of the least squares.

Overall, for what concerns the robustness to the observation

noise and with the parameter settings chosen for the algorithms

(number of points, thresholds, etc), the least squares method

seems to perform a little better than the adaptive method. One

must keep in mind, however, that all errors remain in a range

of a few percents only, for both methods.

B. Influence of ∆T on Mass Estimation Errors

Our datasets were generated by sampling random values

for (CAS,Mach,∆T,mass). Looking at how the error is

distributed among these various samples, we can observe

some differences, depending on the parameter values. This is

particularly true for the temperature differential ∆T .

As an illustration, we have plotted the individual errors

with respect to ∆T for both methods, with the observation

noise added to the temperature T . The results are shown on

figures 6 and 7. On these figures, we can observe a much

higher variance of the errors for the samples with high values

of ∆T . There is clearly a threshold for this ∆T parameter,

above which the mass estimation is much more sensitive to

input errors.

This can be explained as follows: according to the BADA

model, when ∆T is superior to a given threshold (CTc,4
7),

the maximum climb thrust drastically decreases when the

temperature increases, as shown on figure 8. Consequently,

when the atmospheric conditions are hot (∆T is superior a

7This constant is introduced by the BADA model. It depends on the aircraft
type.
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Figure 6: Influence of ∆T on the mass estimation error for

the adaptive method, when introducing a Gaussian noise in

the temperature T (A320, σT = 5 K).
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Figure 7: Influence of ∆T on the mass estimation error for

the least squares method, when introducing a Gaussian noise

in the temperature T (A320, σT = 5 K).

certain threshold), the mass estimation methods become much

more sensitive to temperature errors.

C. Discussion on the Two Methods

We have seen in section IV-A that both methods, adaptive

and least squares, are quite robust to the errors introduced in

the observed trajectory, with a slight advantage to the least

squares method that seems to give more accurate and robust

mass estimations.
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Figure 8: Thrust as a function of ∆T (BADA model, Airbus

A320, FL180).

When choosing one method or the other, we must also

consider the other characteristics of the two methods, dis-

cussed in this section. The weight adaptation method proposed

by Schultz et. al. does not rely on a specific model of the

forces, and a black-box model of the power can be used.

The least squares method takes advantage of the fact that

the specific power is a polynomial function, when using the

Eurocontrol BADA equations to model the forces. Therefore,

the least squares method is model-dependent, which might

be considered as a drawback. However, other models of the

forces might be compliant with this method. For instance, the

Enhanced Jet Performance Model ([25]) seems to be compliant

with the least squares method.

In both methods, the mass (or the weight) is adjusted by

fitting the modeled specific power to the observed specific en-

ergy rate, assuming a given thrust law during climb. However,

the mass variation during climb is guided by very different

laws in the two methods. In the adaptive method, the weight

update computed at each iteration is bounded so as to remain

within a “reasonable” domain (2% of the reference mass, in

our experiments). This mechanism is necessary in this method:

the weight adaptation gives poor results without it. Due to

this mechanism, a large number of iterations is required in

order to possibly reach every mass within [80%; 120%] of

the reference mass. Apart from this bounding mechanism,

the mass variations are free, so as to track the energy rate

variations as best as possible. In the least squares method, the

mass variations follow the fuel consumption law provided by

the BADA model all along the observed climb segment.

As a consequence of the last remark, it is more difficult

to dissociate the respective influence of the thrust and mass

variations with the adaptive method than with the least squares

method. The adaptive method dynamically adjusts an equiv-

alent weight so as to follow the energy rate variations, that

are caused by variations of both the thrust and actual mass

(assuming all the other parameters to be known), making it

difficult to dissociate these two sources of variation. In the
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least squares method, the mass variation is ruled by the fuel

consumption model provided by BADA. If all other parameters

are perfectly known, the only way to explain a variation of

specific power is a change in the thrust law.

Introducing an additional constraint (the fuel consumption

law, here) in the mass estimation method allows us to handle

separately the thrust law and the mass estimation. In [2], we

proposed to learn a typical thrust profile from historical data

that minimizes the overall energy rate error, using an optimiza-

tion algorithm combined with the mass estimation method.

More detailed results on this approach can be expected in a

publication currently under review.

D. Limitations of our Study

For the reasons explained in the introduction, we have

used simulated data in this work, to compare the two mass

estimation methods described in section II. The purpose of this

study was not to compare the climb prediction performances

of both methods on real data, but to check if they could find

a close estimation of the “actual” mass, and if this estimation

was robust to the errors introduced in the observed trajectories.

These trajectory errors were artificially introduced by adding a

noise to some state variables observed at each trajectory point.

Concerning the simulated data, we are aware that the

uniform distributions from which the values of the BADA

input parameters (CAS, Mach, “actual mass”, etc.) were

sampled are unlikely to be observed in real traffic. The uncor-

related Gaussian noise that was added to the state variables,

independently for each trajectory point, might not be realistic

either. Actually, some studies suggest that, in real-life, there

are some correlated and systematic errors in the position and

speed measurements ([24]).

The simulated traffic served our purpose, however, and

we showed that for both methods the relative error on the

estimated mass is low, considering the high values of standard

deviation that were tested for the observation noise. We also

showed how the estimation error varies with some of the input

parameters: for instance, when ∆T is superior to a threshold,

the mass estimation methods are much more sensitive to the

noise in the temperature.

Another limitation of our study is that we have to know

the thrust profile, because we want to find a meaningful

estimation of the mass: our aim, in this study, is to compare

this estimation with the “actual” mass used to simulate the

observed trajectory. In this work, we assumed a maximum

climb thrust, both when simulating the trajectories and when

estimating the mass.

In operations, when trying to predict real trajectories, the

thrust profile (past or future) is not known, and many aircraft

use partial thrust instead of maximum climb thrust. Actually,

the fact that both mass and thrust are unknown is what

motivated the dynamic adjustment of modeled parameters

such as the equivalent weight or the modeled thrust ([17]).

Considering the equations governing the energy rate, one can

either adjust the mass, assuming a constant thrust, or adjust the

thrust, assuming a constant mass. In any case, the modelled

mass and thrust will most likely be different from the real ones,

but they can be tuned so as to improve the overall trajectory

prediction.

Considering the limitations discussed above, it is difficult

to draw some definitive conclusions from our results, as to

how the two mass estimation methods would compare when

using real data. To this end, we would need some real data

containing the actual aircraft masses and thrust profiles. Such

data is not available for the time being, so one can only

expect to assess the overall climb performance of prediction

methods that combine an adjusted (resp. assumed) mass with

an assumed (resp. adjusted) thrust. Alternatively, typical thrust

profiles can be learned from historical data. In [2], using two

months of real data, we demonstrated that the least squares

mass estimation method combined with a learned thrust profile

actually improves the prediction of the energy rate. It would

be interesting to compare this approach to the adaptive method

on real data. Such a comparative study of the overall climb

performance is not in the scope of the current paper, which is

only a first step toward this objective.

CONCLUSION

To conclude, let us summarize our approach and findings,

before giving a few perspectives on future works. In this study,

we compare two mass estimation methods (adaptive and least

squares), using simulated data. The adaptive method, recently

introduced by Schultz et al. in [1], dynamically adjusts the

weight to fit the modeled energy rate to the observation. The

least squares method is a refinement of the analytical method

that we proposed in [2]. This method minimizes the sum of

squared errors on the energy rate, using several points of the

past trajectory. It takes advantage of the fact that the specific

power is a polynomial function of the mass when modeling

the thrust and drag forces with the BADA model. Although it

is model-dependent, we believe that the least squares method

could be extended to some other point-mass models. As an

improvement to the analytical method introduced in [2], the

least squares method takes into account the fuel consumption.

The two mass estimation methods are tested on different sets

of simulated trajectories. For that purpose, the values of the

input parameters used to produce the simulated data (with the

BADA model) are sampled from uniform distributions. Some

noise, sampled from a Gaussian distribution, is introduced in

the state variables of the resulting trajectories, so as to simulate

observation errors. Several datasets are used, considering each

variable in turn, with several values for the noise’s standard

deviation.

The results show that both methods are quite robust to the

errors on the observed trajectory. Even when sampling the

noise from distributions with large standard deviations, the

estimated mass falls within a few percents of the “actual mass”

that was initially used to produce the simulated trajectory. With

the current parameter settings chosen for both algorithms, the

least squares method proves slightly more efficient than the

adaptive method when estimating the mass in noisy conditions.

The results presented in this paper prove that it is possible to

accurately estimate the aircraft mass from noisy observations,

at least when using simulated data and knowing the thrust
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profile. Some previous results ([2]) with real Weather and

Mode-C Radar data prove that the mass estimation combined

with a typical thrust profile learned from historical data can

highly improve the overall performance of the trajectory

prediction. Thus, with these two studies, we have a body of

evidence that mass estimation can be successfully applied to

real trajectories.

From an operational point of view, the resulting improve-

ment in the climb prediction accuracy would certainly benefit

air traffic controllers, especially in the vertical separation task

as shown in [1].

In future works, it could be interesting to compare the two

methods, adaptive and least squares, on Radar track records

instead of simulated data. As discussed before, we cannot

expect to find the actual aircraft mass in this case. Actually,

we can only evaluate the overall performance of the trajectory

prediction, using one method or the other to estimate an

equivalent mass (or weight). Ghasemi et al. ([26], [27]) have

applied machine learning techniques to the trajectory predic-

tion problem. We intend to use the estimated mass as input to

standard Machine Learning techniques (neural networks, linear

regression, etc). Some preliminary experiments show that such

techniques already give good results without even using the

mass. Finally, we plan to compare the Machine Learning

approach to the point-mass model with adjusted parameters

(estimated mass, learned thrust profile).
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