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ABSTRACT

One of the decisive tasks within the air traffic management 
is the resolution of aircraft conflict avoidance problems. To 
avoid conflict, aircraft have to preserve a minimal safety 
distance between them. In this paper, we present optimal 
control models and approaches based on speed regulation to 
perform aircraft conflict avoidance. We consider some 
aircraft configurations with separable trajectories, i.e., such 
that trajectories of aircraft pairs exhibit conflict zones 
which are each other separated in terms of time and/or 
space. We propose a decomposition of the problem in such 
a way to solve independently subproblems of the original 
one. 
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INTRODUCTION

To prevent the risk of collision, the main purpose of Air 
Traffic Control (ATC) is to ensure a minimum distance of 
separation between each pair of aircraft. This norm 
corresponds to 1000ft vertically and 5NM horizontally 
(with the units: 1NM (nautical mile) = 1, 852m; 1ft (feet) = 
0.3048m). In this context, a pair of aircraft is said in conflict

if this norm is not respected. 

Different approaches for aircraft Conflict Detection and 
Resolution (CD&R) have been proposed (see, e.g., Kuchar 
and Yang [6] for a survey of existing approaches). Many 
research works focus on aircraft trajectory deviations, with 
altitude and/or heading changes. Recently, the European 
En-Route Air Traffic Soft Management Ultimate System 
(ERASMUS) project (Bonini et al. [1]) has pointed out the 
interest in aircraft separation maneuvers based on velocity 
changes. Thus, new models and solution approaches based 
on small velocity variations have been developed (see, e.g., 

Pallottino et al. [7], Cafieri [2] ). 

We consider optimal control to perform aircraft conflict 
avoidance based on speed regulation (for an introduction to 
the optimal control theory, see e.g., Trélat [9]). Starting 
from our approach combining direct and indirect optimal 
control methods (Cellier et al. [3]), we propose a 
decomposition of the problem which exploits the aircraft 
trajectory topology. This allows us to obtain a more 
computationally affordable approach for CD&R. 

We recall optimal control for CD&R based on speed 
regulation in the next section. We then present the 
decomposition-based approach. A few remarks and 
statements of future work conclude the paper. 

OPTIMAL CONTROL APPROACH
MODEL WITH ACCELERATION AS COMMAND

We formalize aircraft conflict resolution using optimal 
control. Taking into account energy criteria, we minimize a 
quadratic  cost penalizing the speed variations, on the set of 
all the n aircraft (I), during the whole time horizon (from t0

to tf ). A dynamic system depending on time (t), allows us 
from the command – the acceleration variable (u) – to 
deduce the velocity (v) then, using the trajectory direction 
(d), the position (x) for each aircraft. Moreover, for 
operational reasons, the acceleration and velocity are 
bounded. We consider initial conditions and (free or fixed) 
terminal conditions on velocities and/or positions. The main 
constraint is the separation which guarantees, for each pair 
of aircraft, the fulfillment of the requested norm (D). We 
start from the following optimal control model, using small 
speed variations only, and keeping the aircraft trajectories 
unchanged, to get the aircraft separation. 
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Resolution Strategy 

Optimal Control problems can be numerically solved by 
using two kinds of methods. First, one can use direct 
methods. They are generally based on time-discretization 
and numerical integrators to replace the differential 
equations. They transform the initial optimal control 
problem into a large scale NonLinear (continuous) 
optimization Problem (NLP). A second class of methods is 
the one of indirect methods, which make it possible to 
obtain an analytical solution via the Pontryagin Maximum 

Principle. Nevertheless, for this last one category of 
numerical optimal control methods, theoretical difficulties 
exist to manage constraints on the state variables (for more 
details, see, e.g., Trélat [9]). 

In our model, we have to deal with numerous constraints on 
the state variables. We have constraints on the state 
variables of first order (velocities), i.e., the velocity bounds, 
and constraints on the state variables of second order 
(positions), i.e., the separation conditions. In this context, a 
direct method appears more easy to implement. It can be 
applied by performing a time-discretization and replacing 
the differential equations (representing the system dynamic) 
by numerical integrators of Euler type. This leads to the 
resolution of a NLP. In this NLP, the number of variables 
and constraints largely increases with respect to the number 
of aircraft involved (n) and the number of considered time-
subdivisions (p). More precisely, the computational 
complexity is given by O(np) variables (resp. O(n2

p)
constraints). In order to reduce the number of variables and 
constraints, in Cellier et al. [3], we proposed to combine 
direct and indirect numerical optimal control methods, as 
briefly recalled below. 

We recall the definitions of zone and postzone as follows. 
Let zone be the region where for an aircraft pair separation 
constraints have to be verified and postzone be the 
following region where all the conflicts have been solved 
and when the aircraft are already separated. 

From the spatial point of view, let x
ij

enter be the first (by 
chronological order) trajectory point of the aircraft i for 
which the distance between this point and another point of 
the trajectory of aircraft j corresponds to the separation 
norm. Reciprocally, by projections, we can denote xij

exit the 
last (by chronological order) trajectory point of aircraft i for 
which the distance between this point and another point of 
the trajectory of aircraft j corresponds to the separation 
norm. Similarly, for aircraft j, we can define the trajectory 
points (xji

enter) (resp. xji
exit) to enter (resp. to exit) to the zone. 

The same decomposition can be formulated from the point 
of view of time. 
Let ti

1_min be the minimum instant time for aircraft i (using 
upper velocity bound) to reach its first trajectory point x

ij

enter (with j another aircraft). Let t
i
2_max be the maximum 

instant time for aircraft i (using lower velocity bound) to 
reach its last trajectory point xij

exit (with j another aircraft). 

Let t1 be the zone entry time: 

Let t2 be the zone exit time: 

The zone (from t1 to t2 ) corresponds to an unique period for 
ll the n aircraft. We limit ourselves to satisfy the separation 
constraint within the zone to guarantee the separation 
overall. 

From t0 to t2, we apply a direct method. From t2 to tf , we do
not need to impose the original state variable constraints 
(velocity bounds and separation constraints). We apply an 
indirect optimal control method, which gives an analytical 
solution via the Pontryagin Maximum Principle (Pontryagin 
et al. [8]). 

DECOMPOSING THE PROBLEM EXPLOITING
AIRCRAFT TRAJECTORY TOPOLOGY

We develop the optimal control approach described in the 
previous section, proposing, for certain aircraft trajectory 
configurations, a problem-decomposition into small 
subproblems which can be solved independently. 

As a basic assumption, we consider aircraft flying along 
linear trajectories at the same altitude-level, and focus on 
tactical phases (i.e., short-term potential conflict flight 
phases). For the present study, we consider in particular air 
traffic configurations with separable trajectories, i.e., such 
that trajectories of aircraft pairs exhibit conflict zones 
which are each other separated in terms of time and/or 
space. In practice, aircraft defining a conflict zone do not 
have any interaction with aircraft defining a different zone. 

In this way, we can exploit the topology of the aircraft 
trajectory configurations to decompose the problem and 
solve it independently on subproblems, considering zone

and postzone, and correspondingly direct and indirect 
numerical optimal control methods, on each of such 
subproblems. 

We decompose the initial set of aircraft into subsets of 
aircraft as follows. For a pair of aircraft, we can define a 
potential concourse if a conflict may appear between them 
as a consequence of a speed change. We consider aircraft 
subsets such that if an aircraft has a potential concourse 
with another, the two aircraft are belonging to the same 
subset. We refer to such a subset as a cluster. 

For each cluster of aircraft (c), we can define its own time 
range [t1

c, t2
c] corresponding to its zone (defined in the 

previous section for a set of aircraft). Assuming all the 
zones separated from each other, we can solve 
independently all the aircraft subproblems using their 
respective zone only. This reduces significantly the 
computational effort to solve the whole problem. 
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Computational experiments are carried out using the AMPL 
[5] environment and the interior point method solver IpOpt 
[10] for large-scale nonlinear problems. We consider air 
traffic configuration involving aircraft flying along their 
straight paths and potential conflicts. The horizontally 
separation norm is 5NM. Acceleration are bounded, based 
on Eurocontrol’s Base of Aircraft Data (BADA) 
[4],namelly ui

ub
= −ui

lb = 4000NM/h2 . Velocities are 
bounded, based on the ERASMUS project, by a small speed 
range: 

[vi
t0 − 6% vi

t0 , vi
t0 + 3% vi

t0 ] (where vi
t0 is the initial 

velocity of aircraft i). Terminal conditions are returning to 
the initial velocities (vi

t0 = 447NM/h) at final time (tf = 1h). 

Figure 1. Trajectory configuration involving 30 aircraft 

and 15 conflicts. 

We give an example (see Figure 1) validating our approach. 
We consider an aircraft configuration involving 30 aircraft 
and 15 conflicts. The number of pairs of different aircraft 
corresponds to 435. Applying the previously described 
strategy based on the zone and the postzone, we are not able 
to solve the problem. This is due to the large number of 
variables and constraints in the NLP problem corresponding 
to the zone. Applying the proposed decomposition 
approach, based on aircraft clusters of potential concourses, 
we are able to obtain an efficient solution. The number of 
constraints is reduced by more than 96%, due to the fact 
that only 15 pairs of aircraft have to be considered to satisfy 
the separation conditions. We obtain a (local) optimal 
solution in 232 seconds (on a laptop with 2.53GHz and 4Go 
RAM), with all conflicts solved (all aircraft separated). 

CONCLUSION

We presented an approach for aircraft conflict avoidance 

based on optimal control, with an acceleration command, 
where a decomposition of the problem in such a way to 
solve independently subproblems of the original one is 
proposed. Future work will address a further development 
of this approach to identify subproblems of aircraft 
involved in more general configurations. 
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