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Abstract— Depicting change captured by dynamic graphs and temporal paths, or trails, is hard. We present two techniques for
simplified visualization of such datasets using edge bundles. The first technique uses an efficient image-based bundling method to
create smoothly changing bundles from streaming graphs. The second technique adds edge-correspondence data atop of any static
bundling algorithm, and is best suited for graph sequences. We show how these techniques can produce simplified visualizations
of streaming and sequence graphs. Next, we show how several temporal attributes can be added atop of our dynamic graphs. We
illustrate our techniques with datasets from aircraft monitoring, software engineering, and eye-tracking of static and dynamic scenes.

1 INTRODUCTION

Graph visualization supports various comprehension tasks such as an-
alyzing connectivity patterns, finding frequently-taken communication
paths, and assessing the structure of relational datasets [60]. Visual-
izing large networks is challenging, due to inherent crossing [60] and
clutter and overplotting problems [13, 55].

Graph topology and/or attributes can change in time, in which case
we speak of dynamic, or time-dependent, graphs. These can be classi-
fied into streaming graphs (unstructured edge-sequences with start and
end lifetime moments on a dense time axis) and graph sequences (sets
of graphs where correspondences indicate which nodes, or edges, in
one graph logically match other nodes, respectively, edges in a subse-
quent graph). For both graph types, visualization aims is to help users
spot changes in the overall network structure, while maintaining lim-
ited clutter.

Edge bundling methods have gained strong attention as a way to
show the simplified connectivity patterns of large static graphs [27, 25,
30] and for dynamic graphs [41]. Recently, two scalable methods were
presented for bundling streaming graphs and graph sequences [31], us-
ing an efficient kernel-density bundling method (KDEEB) [30]. For
streaming graphs, this works by applying the KDEEB core operator,
mean-shift clustering [10], to a sliding time window. For graph se-
quences, each keyframe is statically bundled. Inter-keyframe edge-
correspondences are used to interpolate in-between and to highlight
events like the change and (dis)appearance of edge groups. Both tech-
niques ensure spatial and temporal continuity, thus preserve the user’s
mental map, and can be efficiently implemented on the GPU.

In this paper, we extend the dynamic graph visualizations in [31] in
several directions, as follows:

• We analyze and detail the differences between stream and se-
quence graph bundling by applying stream bundling on graph se-
quences and sequence bundling on streaming graphs;

• We consider trail sets, which are streaming graphs where appear-
ing edges never disappear during the considered time range. We
show how bundling can find patterns of interest in eye-tracking
trail data obtained from both static and dynamic scenes;
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• We present several techniques to show additional temporal at-
tributes atop of dynamic bundled and unbundled graphs.

The structure of this paper is as follows. Section 2 presents related
work on dynamic and bundled graph visualization. Section 3 details
our visualization method for streaming graphs. Section 4 presents our
visualization method for graph sequences. Section 5 discusses the
application of streaming bundling to sequence graphs and sequence
bundling to streaming graphs, and highlights the pro’s and con’s of
these combinations. We also present here the two use-cases of bundling
to analyze eye-tracking data obtained from both static and dynamic
scenes. Section 6 discusses the presented dynamic bundling methods
in terms of desirable features. Section 7 concludes the paper.

2 RELATED WORK

2.1 Preliminaries
We classify our datasets of interest in three groups, as follows.
A. Streaming graphs are graphs G = (V,E) with vertices V and edges

e ∈ E = {nstart(e) ∈V,nend(e) ∈V, tstart ∈ R+, tend ∈ R+} (1)

defined by start and end nodes nstart and nend , and lifetime [tstart , tend >
tstart ]. Eqn. 1 can be also used to model streaming graphs where only
an ordering of the tstart and tend values is given rather than absolute
values. Streaming graphs occur when an entire graph is not known in
advance, such as for events collected from live, online data sources [1].
B. Graph sequences are ordered sets of graphs Gi = (V i,E i) which
typically capture snapshots of a system’s structure at N moments
1 ≤ i ≤ N in time. We call a graph Gi in such a sequence a keyframe.
In contrast to streams, edges are explicitly grouped in keyframes, and
additional semantics can be associated with each such keyframe. Fol-
lowing this, sequences may contain so-called correspondences

c : E i→{{ecorr ∈ E i+1},∅}. (2)

Here, c(e ∈ E i) yields an edge ecorr ∈ E i+1 which logically corre-
sponds to e (if such an edge exists), or the empty set (if no such edge
exists). Hence, c models edge-pairs in consecutive keyframes that are
related application-wise. Examples are caller-callee relations between
the same function definitions in consecutive revisions of a software
system, mutual-dependency relations between the same pairs of files
consecutive revisions of a code base.
C. Trails are sequences

T = {pi = ((x,y) ∈ R2, t ∈ R+)i} (3)

with increasing values ti, such as the path of a vehicle in time formed
by the recorded samples pi of the vehicle’s position. A trail-set {T} is
a streaming graph with pi as nodes and pairs (pi,pi+1) as edges. How-
ever, as we show in Sec. 5.3, trails can be more effectively visualized
with specific techniques.



2.2 Dynamic graph visualization
Visualizing changing graphs has a long history. Methods can be di-
vided into two classes, as follows.

Unfolding the time axis along a spatial one, e.g., using the ‘small
multiples’ approach [6, 56], has led to many dynamic graph visualiza-
tions. Specific solutions are known for planar straight-line graphs [5].
In software visualization, TimelineTrees [7], TimeRadarTrees [8], and
TimeArcTrees [54], and CodeFlows [54] lay out a graph sequence
along a 1D space (circle or line) and juxtapose several such instances
on an orthogonal axis to show the graph evolution. Although reducing
clutter by not using a node-link drawing metaphor, such methods are
visually not highly scalable, nor are they very intuitive, especially for
long sequences with complex event dynamics.

Animation is a second way to show dynamic graphs, and can specif-
ically help finding change relationships in complex spatio-temporally
coordinated events [49]. Ware and Bobrow have empirically shown
how motion can provide cognitively and perceptually supported effi-
cient and effective access to large graphs [61]. Several techniques cre-
ate incremental node-link graph drawings by optimizing a cost function
that includes static-graph-drawing aesthetic criteria and layout stabil-
ity for unchanging graph parts [23, 18, 22]. These methods are typi-
cally used for graph sequences. Animation can be preferable to small-
multiples in conveying dynamic patterns, especially for long repetitive
time series [57]. Such methods, however, may suffer from visual clut-
ter, due to the underlying node-link metaphor.

2.3 Bundled edge graph visualization
Edge bundling mitigates clutter by routing related edges along similar
paths. Clutter causes and reduction strategies are discussed in [16, 66].
Such strategies are similar to well-known map generalization in car-
tography [9], concerned with legibly depicting a complex world in
static 2D views. Bundling sharpens the edge spatial density, by mak-
ing it high on bundles and low elsewhere [30]. As a result, the main
graph structures are easier to follow – for example, we can find node-
groups related to each other by edge-groups (bundles) separated by
white space [25, 55].

Dickerson et al. merge edges by reducing non-planar graphs to pla-
nar ones [14]. Hierarchically edge bundles (HEBs) route edges of com-
pound graphs along the hierarchy layout using B-splines [27]. Gansner
and Koren bundle edges in a circular node layout similar to [27] by
area optimization metrics [26]. Dwyer et al. use curved edges in
force-directed layouts to minimize crossings, implicitly creating bun-
dles [15]. Force-directed edge bundling (FDEB) works by attracting
edge control points [28]. FDEB was enhanced to separate opposite-
direction bundles [48]. MINGLE uses multilevel clustering to accel-
erate bundling [25]. Flow maps use a binary clustering of nodes in a
directed flow graph to route curved edges [44]. Control meshes are
used to route curved edges [45, 67]. Geometry-based edge bundling
(GBEB [13]) and ‘winding roads’ (WR [37, 36]) accelerate this idea
using Delaunay and Voronoi diagrams respectively. Skeleton-based
edge bundling (SBEB) uses the skeleton of the graph drawing’s thresh-
olded distance transform to create strongly ramified bundles [17].

Edge-direction color interpolation [27, 13] and transparency or hue
for edge density or edge lengths [37, 17] are used to render bundles,
following [4]. Bundles can be drawn as compact shapes whose struc-
ture is emphasized by shaded cushions [55, 47]. Graph splatting vi-
sualizes node-link diagrams as smooth scalar fields using color and/or
height maps [59, 32]. To explore crowded overlapping bundles, se-
mantic lenses can be used [29]. Ambiguity-free bundling combines a
semantic lens with a refinement step that reroutes and/or selectively
bundles edges so that bundles avoid unrelated nodes [38].

2.4 The challenge of bundling dynamic graphs
Given the above, edge bundling seems suitable to visualize the struc-
ture of dynamic graphs. Nguyen et al. proposed this first [41]:
A streaming graph is cut into a set of graphs by a sliding time-
window. Each such graph is drawn with existing edge-bundling meth-
ods [28, 27]. Edge similarity is used to model temporal coherence. We
improve this idea in several directions: ensuring a high continuity of

the created animations where large and long-lived structures are stable
over space and time (Sec. 3.1); computational scalability for graphs of
tens of thousands of edges (Sec. 3.2); and a new way to bundle graph
sequences using their correspondence information (Sec. 4).

3 VISUALIZING STREAMING GRAPHS

Given a graph G with node positions, we model bundling as an operator
B : G→ R2. Edges that are close in G are mapped to close spatial
positions (bundles) in the graph drawing B(G) [30]. Edge closeness
in G can be defined in many ways: tree-distance of edge end-nodes
in a hierarchy [27], closeness of edges in a straight-line drawing of
G [17, 28], or a mix of graph-theoretic and image-space distances [41].

3.1 Continuous bundling
Consider now a streaming graph (Eqn. 1), the ‘instantaneous’ graph
G(t) = {e ∈ G|t ∈ [tstart(e), tend(e)]}, and its bundling B(t) = B(G(t))
by a bundling operator B. Ideally, we want that B(t) (a) varies continu-
ously in time, and also (b) keeps the spatial properties of the underlying
‘core’ operator B, i.e., puts close edges in tight bundles.

Property (b) is satisfied by using a ‘good’ operator B that ensures
that any input graph is strongly bundled, such as WB [37], GBEB [13],
SBEB [17], and KDEEB [30] and, to a lesser extent, FDEB [28]. Prop-
erty (a) means that, when G(t) changes slightly, then B(G(t)) should
also change slightly, so graph structures stable in time are also sta-
ble in the animation. Conversely, if the graph changes strongly, there
should be a visible change in the animation. However, even when large
changes occur, discontinuous bundle jumps in the animation should be
avoided, since visually tracking such jumps is hard [21].

A partial solution to (a) is to reduce the dynamics of G(t), by using
a low-pass filter on G(t). If G̃ is the filtered graph, the bundling shown
at time t is B(G̃(t)). This is the solution proposed by StreamEB [41],
which uses a sliding time-window (finite-support box filter) to com-
pute G̃ as all edges alive in [t, t + ∆t]. However, this approach has
two limitations. First, the smoothness of the final animation depends
strongly on the variation rate of G̃. If graphs for two consecutive time
moments G̃(t) and G̃(t +∆t) differ too much, e.g., too many edges are
added or deleted per time unit, or if the filtering time-window is too
small, there is no guarantee that the corresponding bundlings B(G̃(t))
and B(G̃(t +∆t)) are spatially close. When this is not the case, users
see a disruptive visual jump from t to t +∆t. Secondly, the computa-
tional efficiency of StreamEB strongly depends on the scalability of the
‘core’ bundling operator B. Algorithms which ensure good spatial sta-
bility [28, 13] are also quite expensive, roughly O(|Ẽ|2) for |Ẽ| edges
in G̃(t). Faster bundling algorithms [25, 17, 37] cannot ensure conti-
nuity. Small changes in the input graph may generate large changes
in the bundled image, so such algorithms are less suitable for stream
bundling.

3.2 Algorithm
We address the above challenges by exploiting the properties of a
recent bundling method for large graphs: kernel-density estimation
edge bundling (KDEEB) [30]. Given a graph drawing G = {ei}1≤i≤N ,
KDEEB estimates the spatial edge density ρ : R2→ R+

ρ(x) =
N

∑
i=1

∫
y∈ei

K
(

x−y
h

)
(4)

where K : R2 → R+ is an Epanechnikov kernel of bandwidth h [24].
KDEEB iteratively moves all edge points x upstream in ∇ρ following

dx(t)
dt

=
h(t)∇ρ(t)

max(‖∇ρ(t)‖,ε)
(5)

where ε is a small regularization constant. After a few Euler itera-
tions for solving Eqn. 5, during which we decrease h and recompute
ρ , edges converge into bundles. A final 1D Laplacian edge-smoothing
pass is done to remove small wiggles (for details, see [30]). A closer
analysis, not reported [30], shows that KDEEB is nothing else but the
well-known mean-shift clustering algorithm [10] applied on the graph



drawing (compare Eqns. 6 and 20 in [10] with Eqns. 4 and 5 above).
This notably implies that smoothness, noise robustness, and stability
results proven for mean shift are inherited by KDEEB.

The density map ρ is computed by splatting the kernel K, stored as
an OpenGL texture, into a 2D buffer. On a modern GPU, this allows
bundling graphs of tens of thousands of edges in a few seconds.

To bundle streaming graphs, we now iterate KDEEB in sync with
the stream time t (see Alg. 1): We move a sliding window [t, t +∆t]
over the time range of the streaming graph, compute ρ(t) from G̃(t),
and displace, or advect, edges by Eqn. 5. This approach has two key ad-
vantages. First, ρ(t) is very efficiently computed by the core KDEEB
method, which is O(|Ẽ|), i.e. linear in the edge count of the graph G̃.
Secondly, and most importantly, KDEEB requires I = 5..10 iterations
for a single static graph to be bundled. We remove this iterative pro-
cess by letting G̃ bundle while advancing t. This makes sense since, if
G̃ changes very slowly, advancing t is nearly equivalent to performing
iterations for a fixed t, so we obtain a strongly bundled G̃, which is
what we want to see. If G̃ changes rapidly, then our process has less
time to bundle, and thus we see looser bundles, which shows precisely
the dynamics of G̃. Details on performance and parameter settings are
given in Sec. 6.1.

1 t← 0
2 while stream not ready do
3 ρ ← 0
4 Elive←{e ∈ E|[tstart(e), tend(e)∩ [t, t +∆t] 6=∅}
5 foreach e ∈ Elive do
6 splat e into ρ ; //Splat live edges (Eqn. 4)
7 end
8 foreach e ∈ E|tend(e) ∈ [t−δ t, t] do
9 relax e towards its original position ; //Vanishing edges

10 end
11 foreach e ∈ Elive do
12 advect e one step ; //See Eqn. 5
13 apply 1D Laplacian smoothing on e ;
14 draw e in the visualization ;
15 end
16 t← t +δ t ; //Advance sliding window
17 end

Algorithm 1: Bundling streaming graphs with KDEEB

Our dynamic bundling can be seen as a process where edges con-
tinuously track the local density maxima of a dynamically-changing
graph. Since an advection step moves edges with a bounded amount
h (line 12, Alg. 1), and since advection is done while advancing the
stream time t, the maximal amount an edge-point can move at any time
is h (Eqn. 5). Hence, the bundles move smoothly on the screen.

We additionally interpolate disappearing edges from their current
(bundled) position towards their original (unbundled) position in the
input stream (line 9, Alg. 1). This makes the animation symmetric:
New edges progressively bundle as times goes by, while disappearing
edges relax, or unbundle, towards their original positions after exiting
the sliding time-window. To further emphasize this effect, we modulate
the edges’ transparencies in a similar fashion. We note that this effect
is optional. If left out, disappearing edges will exit silently, without
relaxation. The choice of using relaxation or not depends on whether
users want to see edge-vanishing events or not.

An important goal of animation is to help users find change over
time or deviations from regular patterns [57, 60]. We support this by
shading bundles to convey their change speed, using a simple and fast
image-based method: We compute the density moving-average ρ̃(t)
over [t, t +∆t], and color bundles by the normalized difference |ρ(t)−
ρ̃(t)|/ρ̃(t) using a white-to-purple colormap. Results are shown next.

3.3 Applications
Figure 1 shows six frames from a streaming visualization of US
flights [52]. The streaming graph contains flights with start and end
date-and-time and geographical locations. The resulting flight-trail

bundles are similar in terms of sharpness and bundling strength to bun-
dles produced by the static KDEEB method [30]. Equally importantly
for our dynamic use-case, they show a continuous variation in time1.
In Fig. 1, we see that same time-of-day flight patterns are quite similar
for several days. However, they vary strongly over a day: During the
evening, the East coast has the most intense traffic. During the after-
noon, the entire US is uniformly covered with flights. During the night,
flights linking the two coasts dominate.

Figure 2 shows a similar visualization for flights over France (7
days, 54K flight trails). For each trail (Eqn. 3), at each recorded time-
moment ti, we know the airplane position pi, the plane height hi ∈R+,
and flight number IDi ∈N. For bundling, we only use pi and ti. Visual-
izing additional attributes atop of the bundling is discussed in Sec. 5.2.

As for the US dataset, bundles are smooth and clutter-free in
both space and time. Colors show the bundles’ speeds of change
(white=stable, purple=rapid changes, see Sec. 3.2). Red dots show
the first and last positions when a plane was monitored. Dots inside
France are actual airports. Dots outside the French territory show in-
ternational flights which enter/exit the French airspace. We see that,
during the day, the main ‘backbone’ flight pattern is quite stable over
different days, and contains mainly north-south routes, with Paris as a
key hub (Fig. 2 top row). A different pattern, also quite stable, appears
at night (Fig. 2 bottom row): The vertical bundles are Southern flights
bound to Paris. We also see more purple, which shows that night-time
flight paths are much less stable than during-the-day flight paths.

For the US dataset, a qualitative comparison of our results with
StreamEB [40] shows that KDEEB produces stronger bundles and an
overall smoother animation. This is first due to the fact that KDEEB
can produce bundles with many inflexion points, while FDEB has a
smoothing factor built in its edge compatibility metric that disfavors
such shapes. Secondly, this is due to the built-in smoothness of our
method which bundles edges as they arrive in the input stream.

4 VISUALIZING GRAPH SEQUENCES

Graph sequences Gi (Sec. 2.1) exhibit different properties from stream-
ing graphs. First, streams allow defining an infinity of “instantaneous”
graphs G(t)= (V,{e∈E|tstart < t < tend}),∀t ∈R (see Sec. 3.2). Some
of these graphs may not have a direct meaning or usefulness. In con-
trast, graph sequences contain a finite set of graphs which have been
explicitly computed in specific ways and for particular time moments,
such as the (major) revisions of a software system. Secondly, keyframe
correspondences add higher-level, edge-centric, information, e.g., the
fact that two files f1, f2 share a common piece of text in version 1, and
next f1 shares the same text with a file f3 in version 2. In contrast,
streaming graphs (Eqn. 1) only specify how edges appear and disap-
pear in time, but do not necessarily encode logical connections between
edges at different time moments. Thirdly, graph sequences do not nec-
essarily come with birth and death moments for individual edges. Fi-
nally, individual keyframes in graph sequences must be wholly avail-
able before processing, whereas edges in a streaming graph can be, in
most cases, analyzed as each one appears. All in all, the above make a
case for treating graph sequences differently from graph streams.

4.1 Algorithm

For graph sequences, we propose the following bundling method: For
each keyframe Gi, we compute its bundled layout Bi = B(Gi), using a
given bundling algorithm B. Next, we interpolate these layouts be-
tween a keyframe i and the previous and next keyframes i− 1 and
i+1 respectively using the correspondence data (see Fig. 3). Consider
a time axis t along which we place keyframes at moments ti = i∆t
(any other definition of ti can be easily used, if available). For each
edge e ∈ Gi, if c(e) = ei+1 ∈ E i+1, we linearly interpolate Bi(e) to
Bi+1(ei+1) over the interval [ti, ti+1] (Fig. 3 d). If c(e) is the empty
set, i.e., e has no correspondence in E i+1, we interpolate Bi(e) to
the line segment L(e) = (nstart(e),nend(e)) over the same time inter-
val (Fig. 3 b). Symmetrically, if c−1(e) = ei−1, we interpolate from

1For this and the other examples next, see the submitted videos.
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Fig. 1. Streaming visualization for 6-days US airline flight dataset (41K flights) – see Sec. 3.3.
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Fig. 3. Interpolation for graph sequence visualization

Bi−1(ei−1) to Bi(e) over [ti−1, ti] (Fig. 3 a), else we interpolate from
L(e) to Bi(e) over the same time interval (Fig. 3 c).

We emphasize appearing and disappearing edges by shading: Edges
with correspondences between two keyframes i and i+1 are blue and
thick. Edges that disappear from i to i+ 1 get a linearly interpolated
color from blue (at ti) to green (at tmid = ti+ti+1

2 ), and next get an alpha
value decreasing from opaque (at tmid) to fully transparent (at ti+1).
Edges that appear from i− 1 to i get an alpha increasing from fully
transparent (at ti−1) to opaque (at tmid), followed by a color interpolated
from red (at tmid) to blue (at ti). Hence, edges appear by fading in to red
(highlights their incoming), then smoothly merge in a blue bundle, and
disappear by unbundling, becoming green (highlights their vanishing),
and fading out. The following examples explain our color choice.

4.2 Applications

We illustrate our sequence visualization with two datasets from soft-
ware engineering. The first dataset contains 22 revisions of Mozilla
Firefox [39]. For each revision, we extracted the code hierarchy (fold-
ers and files), and also the clones, or code duplicates, using the freely
available clone detector SolidSDD [46, 51]. So, for each revision, we
obtain a compound hierarchy-and-associations graph where two files
are linked by an edge if they share a code clone. If a code fragment is
cloned in several files, all these files are pair-wise linked by edges.

Figure 4 shows snapshots from SolidSDD’s HEB visualization
for such graphs. Node colors show cloning amount (red=high,
green=low). Seeing clone patterns helps assessing how much, and
where, did adaptive maintenance (adding new features) introduce new
clones, and how much, and where, did perfective maintenance succeed
to remove clones [42]. This helps planning clone removal with mini-
mal impact on system architecture in perfective maintenance. For this,
we need to easily compare clone evolution patterns. This is hard to do

using such small-multiple displays.
To support this task, we first create a so-called union hierarchy [3]

containing all graph nodes in the analyzed releases (13856 file and
folder nodes). Next, we build correspondences between clones in con-
secutive releases: Two clone relations ei and ei+1 correspond if they
link the same files, i.e., files having the same fully qualified names,
in Gi and Gi+1. Other ways to find correspondences, e.g., using the
actual text content of the clones [42], can be used. The above steps de-
liver a graph sequence Gi (Sec. 2.1) which contains 5687 unique edges
(counting corresponding edges as one) and 48591 edges in total.

We now use our sequence visualization on this data. Figure 5 shows
several frames from this animation (see submitted videos). The bottom
row shows results produced using KDEEB as the underlying bundling
method. Disappearing edges are green (removing clones is good); ap-
pearing edges are red (introducing new clones is bad). Additionally,
we color hierarchy nodes as follows: Nodes which contain a chang-
ing clone count are colored by the clone count change, using red for
positive values and green for negative values. Nodes where the clone
count stays constant are colored blue. In all cases, we use saturation to
indicate absolute values (saturated=high, desaturated=low values).

We note several events of interest. First, we see a stable long-lived
‘core’ clone-structure (blue bundles). These can be hard to remove
clones, or clones that maintainers did not know of, such as when no
clone detector was actively used during perfective maintenance. We
also see several moments when major clone-pattern changes occur. For
instance, from revision 2.0.0.10 to 3.0, many green edges appear, so
many clones are removed (Fig. 5 d). Node coloring helps finding high-
clone-density subsystems. For instance, from revision 3.6.10 on, we
see two such dark-blue groups (dotted circles, Fig. 5 bottom row, e-
h). Since these groups stay visible in several revisions, they indicate
“stubborn” clones which, for several reasons, could not be removed
for a long time. Although this information is encoded in the bundles
too, finding such patterns on nodes is easier than visually following
bundles. In other words, node colors help finding aggregated patterns,
such as high-clone-density systems during the evolution, while bundle
changes help seeing which particular subsystems share such clones. We
also see a red spot in revision 2.0.0.10 (Fig. 5 c): This is a subsystem
where many intra-system clones have been added. Seeing such clones
without node coloring would be hard, since their (bundled) edges are
very short.

Between revisions 7.0 and 8.0 we see several interesting events:
First, several ‘stubborn’ clones are removed (green edges shown af-
ter passing revision 7.0) Next, clones between the same files are added
back again (red edges seen when approaching revision 8.0). This typi-
cally happens when one changes related code in two subsystems, such
as by independently applying twice the same given design pattern.
However, developers were likely not aware of the clones, otherwise we
would expect the clone to be removed during such a perfective refac-
toring. Finally, comparing the first and last frame shows that the core
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Fig. 2. Streaming visualization for 7-days France airline flight dataset (Sec. 3.3)

revision 0.8 revision 3.0 revision 3.5 revision 10.0 revision 11.0

Fig. 4. Small multiples visualization for clones in Mozilla Firefox for five selected revisions (Sec. 4.2)

clone pattern did not change significantly. Also, the bundle pattern
shows that clones connect unrelated subsystems (nodes in the radial
icicle plot that are not close to each other), hence not in the same par-
ent system. This is a negative sign for code quality, since removing
such clones requires system-wide understanding and refactoring.

As a second example, we extracted a compound digraph with fold-
ers, files, and functions (hierarchy) and function calls (associations)
from 14 revisions of the Wicket open-source software [63]. We next
build the same union hierarchy as in our first example (8799 nodes),
and compute correspondences using the fully qualified signatures of
caller-callee pairs. We get 11953 unique edges and 92810 total edges.
Figure 6 shows several frames from this sequence visualization. To
better depict the animated transitions, we focus here on a short pe-
riod (3 revisions). This visualization helps reasoning about the sys-
tem’s (change of) modularity, a challenging task in program compre-
hension [3]. The interpretation is as follows: The stable pattern (blue
bundles) shows the stable control-flow system logic. These are calls
that do not change much across versions. We see that this pattern is
quite complex – it connects many subsystems in different hierarchy
parts, so the overall modularity of this system is and stays relatively
low. In detail, we see that in version 1.4.18, a significant coupling
is added between systems A and B (thick red bundle A-B, Fig. 6 c).
Interestingly, in the same revision, many calls are removed between
the same systems (large green bundle A-B, Fig. 6 f). This shows a
refactoring of the A-B system interaction – note the similarity with the
clone insertion-deletion pattern and its interpretation discussed for the
Firefox dataset.

5 ADDITIONAL APPLICATIONS

5.1 Streaming vs sequence graphs

Sections 3 and 4 introduced two techniques for visualizing streaming
and sequence graphs. An open question is: Can we use the streaming
technique for a sequence graph and/or conversely? Why do we need
two techniques? Below we analyze this aspect.

5.1.1 Streams with sequence-based visualization

For the first experiment, we convert our France air-traffic streaming
graph (Sec. 3.3) into a sequence graph of 7 keyframes Gi,1≤ i≤ 7. For
this, we divide the 7-days stream into 7 one-day periods. Edges are as-
signed to keyframes based on start time. Next, we add correspondences
between edges in consecutive keyframes (days) whose geographic start
and end locations are very similar and flight IDs are identical.

Figure 7 shows several frames from the resulting sequence-based
animation. For the keyframe pairs (1,2) and (4,5) we show two inter-
mediate frames at around the first third, respectively second third, of
each day (see legends in Fig. 7). Color encoding follows Figs. 5 and 6
– corresponding edges between two consecutive keyframes are blue;
appearing edges are red; and disappearing edges are green.

Comparing Fig. 7 with the streaming bundling of the same dataset
(Fig. 2), we see that the sequence method yields much thicker bundles
than the streaming method. There are two reasons for this:

Time window: In the streaming method, each bundled graph G̃(t)
contains edges which are alive in a time-window ∆t. As detailed next
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in Sec. 6.3, we set ∆t to match a small (5%) change in the number of
edges in G̃. So, if the stream changes rapidly, ∆t is quite small. In
contrast, the sequence visualization of the stream (Fig. 7) corresponds
to a very coarse regular time-sampling, where ∆t is one-seventh of
the entire stream duration. The keyframes Gi in this sequence are
much larger than the instantaneous graphs G̃(t) in the corresponding
stream-based visualization, hence they yield thicker bundles.

Resolution: In the streaming method, the time-step δ t for sliding the
time-window controls the bundle tightness. As explained in Sec. 6.3,
we set δ t to 1/I times the average edge lifetime in the stream, where
I ' 10 is the number of bundling iterations. For our flight data, this
average is a few hours (an edge is a flight over France), so δ t is a
few tens of minutes. Hence, the 7-day streaming animation has hun-
dreds up to a thousand frames, each being a slightly different graph
bundling. In contrast, the sequence visualization of the same stream
has only seven different graph bundlings. In-between frames are cre-
ated by linear interpolation between keyframes. The keyframes are
quite different, since flight patterns for consecutive days are different.
Hence, linear interpolation has a strong tendency to relax bundles.

We see a large amount of red (appearing) and green (disappearing)
flight edges in frames located between the seven keyframes (Fig. 7).
This is due to the way we compute edge correspondences between
keyframes: As stated at the start of Sec. 5.1.1, we match consecutive-
day flights with close start and end points and same flight IDs. From
54K edges, we obtain 16567 unique edges (counting corresponding
edges as one). Hence, about 30% of all stream’s edges have no corre-
spondences – they appear red and green in the animation. This helps

us find further insights. For example, in Fig. 7 f, we see two large
southwest-northeast green bundles. These are morning flights in day 4
which do not have similar morning flights in day 5. In Fig. 7 g, we see
two thick northwest-southeast red bundles appearing in the center and
to the right. These are evening flights in day 5 which do not have sim-
ilar evening flights in day 4. If we compare Figs. 7 b and f, we see that
one of the green bundles (marked in black) is similar. This means that,
along that route, morning flights from day 1 were not present in day 2
just as morning flights in day 4 were not present in day 5. However, if
we compare Figs. 7 c and g, we see that the red bundles are very dif-
ferent. Since there are much larger red bundles in image (g), it means
that there were many more evening flights appearing in day 5 vs day 4
than in day 2 vs day 1. These types of insight are not directly obtain-
able using the streaming visualization, since that visualization does not
require, and thus does not depict, edge correspondence information.

We also tried a less restrictive correspondence criterion – match-
ing flights in consecutive days which are spatially close (and thus may
have different flight IDs). This yields only 8811 unique edges, i.e.,
about 16% of the stream edges have no correspondences. Although this
produces a smoother dynamic visualization, as there are more inter-
keyframe correspondences, bundles have weaker semantics: We are
able to visually track the evolution of spatially similar flight groups,
but we cannot say whether these flights have the same ID.

Visualizing streams as sequences requires delicate choices, such
as cutting the stream at the right moments into disjunct chunks, and
adding meaningful edge-correspondences. When such operations are
not evident, and when we want to see fine-grained graph changes, one
should not visualize graph streams as graph sequences.
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Fig. 7. Sequence visualization of streaming graph (France airline dataset). The sequence has 7 frames, each with the flights during one day. We
show animation keyframes at the start and end of days 1 (a,d) and 4 (e,h), and intermediate in-between frames (b,c,f,g) (see Sec. 5.1.1).

5.1.2 Sequences with stream-based visualization
For the second experiment, we convert our Wicket graph sequence
(Sec. 4.2) to a streaming graph, by inserting 100 uniformly-spaced time
moments between each two consecutive keyframes. We obtain 700
frames, which is the same order of magnitude as in a typical streaming
visualization (see Sec. 5.1.1). We next visualize the resulting streaming
graph using the streaming visualization method.

Figure 8 shows three frames from the resulting animation, taken
between revisions 1.5.0 and 1.5.1. The sequence method (top row)
shows a stable core indicating unchanging call patterns (blue bundles),
and also outlines the removed calls (green) and added calls (red). As
expected, these results are quite similar with the ones shown in Fig. 6,
which were computed with the same method and for the same dataset.
The bottom row in Fig. 8 shows the equivalent frames from applying
the streaming method to the sequence graph. Although doing a good
job in creating a smooth and stable bundling, this method cannot em-
phasize edge additions and removals, since it has no correspondence
data to separate the treatment of stable and (dis)appearing edges.

5.2 Visualized attributed dynamic graphs with bundling
Bundling of streaming or sequence graphs highlights graph structural
changes, e.g., (dis)appearance or persistence of edges. However, many
such graphs also have attributes. For instance, our French flight dataset
has, at each recorded time-sample ti, height data (see Sec. 3.3). From
these, we can also compute derived attributes such as flight directions
and flight speed. Correlating such attributes with the (bundled) flight
paths provides additional insight. We next show how to add the follow-
ing attributes to streaming bundled graph visualizations (none of which
is depicted by the streaming graph visualization presented in Sec. 3.2):

A1: instantaneous positions of in-flight airplanes;
A2: height along flight trails;
A3: flight directions along trails;
A4: airplane flight speed along their flight trails.

As explained in Sec. 3.2, our streaming method uses all graph edges,
or trails, in a window w(t) = [t, t +∆]. Instead of drawing full trails T ,
we now consider trail segments T∆(t). These hold all sample points of
an unbundled trail T falling in w. As background, we draw the den-
sity map ρ (Eqn. 4) of all trails in w, luminance-coded. This creates
the spatial context in which we can focus on plane motions along flight

routes. We next texture trail segments with an an alpha texture Φ∆

built by placing Gaussian half-pulses φi at the sample points pi under
a Gaussian envelope over w (Fig. 10). We color-code trail segments by
flight height (blue=low, red=high). Texturing has two purposes: Set-
ting ∆ to low values creates images where the arrow-like (high to low
alpha) shapes created by φi, and their motion, shows the instantaneous
plane positions at a given time moment (A1), and their motion along
trails (Fig. 9 a). Setting ∆ to larger values creates ‘trains’ of arrow-like
shapes that slide along trails. Figure 9 b shows a snapshot from such
an animation). Here, short pulses indicate slow-motion planes, while
longer pulses show fast planes. For instance, in Fig. 9 b (inset), we see
a fine-grained blue trail segment indicating a slow, low height, outlier
flight in an area with fast (long pulse) and higher (green) flights (A4).

t

t t+ΔtΔt

pi pi+1 pi+2 pi+3

φi
φi+1

φi+2

φi+3

ΦΔ
α=1

α=0

Fig. 10. Construction of directional pulses for animation (see Sec. 5.2).

Increasing ∆ allows us to smoothly navigate from instantaneous
views on the data to more global views. Figure 9 c shows this for
∆ set to roughly 8 hours for our 7-days flight stream. Colors map flight
heights (A2). Blue spots indicate regions densely populated by land-
ing zones (airports). Warm lines show in-flight routes. By looking
at the latter, we can see that most studied flights have the same al-
titude. This observation correlates with flight rules for French civil
aircraft. Figure 9 d shows a similar map, with trails colored now us-
ing a directional hue colormap (see colorwheel), thus addressing A3
over the entire studied time period.. The direction color coding lets
us discover several close-and-parallel, opposite-direction, flight paths,
e.g., A1,A2; B1,B2, C1,C2 and D1,D2 (going southwest-northeast and
conversely); and E1,E2 (going roughly northwest to southeast and con-
versely). Similar patterns (not shown here for conciseness) exist for the
almost all other similar-size time intervals in the studied 7-day period.
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From such images, we can conclude that flights linking pairs of airports
follow parallel paths but are structurally not overlapping in space.

In Figs. 9 e-f, we use the same color-coding as in Fig. 9 d, but now
the layout is given by two frames of the bundled streaming flight graph,
which correspond to two moments in two different days in our 7-day
sequence. Since trails are bundled, geographical (spatial) information
is lost: The bundles indicate now just connections between airports,
rather than actual flight paths. Still, directional color-coding is useful
to show temporal insights. First, we see that the connection pattern is
roughly identical for the two studied moments. Flights in bundles A
and B keep their directions over time, respectively northwest (green)
and southeast (green). Flights in the big central white bundle structure
C go equally in both directions at both studied moments, since white
is the result of additively blending opposite colors in our colormap. In
contrast, flights in bundle D go southwest (yellow D1 in Fig. 9 e) and
then return northeast at moment 2 (blue D2 in Fig. 9 f).

5.3 Visual analysis of eye tracking trails
In the applications discussed so far, our temporal data was an explicit
graph: For streaming graphs, nodes are airports and edges are flight
paths between airports; for graph sequences, nodes are software ar-
tifacts and edges are clone relations. In both cases, bundling is an
effective instrument to find coarse-scale connection patterns between
groups of related nodes, and see how these patterns change in time.

In this section, we show two different usages of bundling for finding
spatio-temporal patterns from non-graph datasets. We consider trails
created by high-resolution eye trackers which record the instantaneous
position of the gaze of a subject watching a given scene. A trail S =
{pi} (see Sec. 2.1) is thus the temporal trajectory of the subject’s gaze.
The so-called fixation points (FPs) pi are points where a subject’s eyes
are relatively static, focusing on and attending to an object of interest
in the watched scene. Fixation points are connected by continuous,
ongoing eye movements called saccades [53, 20, 12].

Eye tracking analysis has a long history in experimental psychol-
ogy [65, 53]. Figure 11 (a,b) shows some of the earliest recorded eye
tracking datasets [65]. One key task involving eye-tracking trails is
to extract the so-called fixation areas (FAs), or compact spatial zones
where several FPs are clustered. These are areas around which the
subject focused for a considerable period of time, or repeatedly, while
scanning the scene. For example, Figs. 11 c and d show the eye track-
ing of a subject driving a car [12]. In image (c), FAs are shown as
high-value (red) isolines of the FP density map. This shows how the
driver focused on the steering wheel, gear shift, and various dashboard
instruments. In image (d), mean shift clustering [10] was used to find
the fixation area centers (FACs), thereby producing a simplified view
of the trails.

FP density maps and their clustered versions (Figs. 11 c,d) help find-
ing the coarse-scale regions (and region centers) of subject attention in
a scene. However, they do not address the following additional tasks:

T1: Find which FPs belong to which FA and FAC;
T2: Find the main scanning patterns connecting FAs to each other.

We next show how graph bundling can effectively address these
tasks. We illustrate this with eye-tracking data obtained from watching
both static scenes (Sec. 5.3.1) and dynamic scenes (Sec. 5.3.2).

5.3.1 Eye-tracking for static scenes: Viewing infographics
Small multiple displays (SMDs) is a well-known technique used in
information visualization to compare a small set of similar objects by
representing them side-by-side using similar visual encodings. They
are effective in helping users to compare such objects and find pairwise
differences or the scope of alternatives in a given set of options [56].

Although SMDs are typically static, several researchers argue for
a continuum between static visualizations and dynamic visualizations,
such as our dynamic graphs presented earlier. Krygier et al. character-
ize this continuum using interactivity intensity [35]: At one end, static
graphics afford mental (internal) interactivity. For example, a SMD
is mentally interactive in the sense that users can proactively control
with their eyes the viewing order of this sequence; they can, for in-
stance, choose to study the sequence at their own pace and in any order
they wish. In contrast, an animation featuring start, stop, and rewind
buttons is slightly more (externally) interactive, but is less (internally)
interactive, since it must be passively viewed in a predefined order.

In this context, a key challenge is to design objective success mea-
sures to evaluate static vs dynamic visualizations [19]. For this, Fab-
rikant et al. proposed the concept of inference affordance [20, 11] that
integrates informational equivalence (amount and quality of content)
and computational equivalence (inference quality and efficiency based
on design) between two such displays [50]. To do this, they asked
subjects to study a static SMD showing ice cream consumption over
12 months over the counties of a fictitious country, and next answer
several questions on the data [20]. The subjects’ eye movements were
recorded and displayed atop of the SMD (Fig. 12 a).

However, raw eye movements are too unstructured to address task
T2. To handle this, Fabrikant et al. proposed a combination of data
categorization, i.e., the classification of temporal (sub)sequences into
different classes, by extracting relevant sequence features; and data
summarization, i.e., the simplified depiction of the gaze’s dynamics,
by agglomerative clustering of similar saccades. Figure 12 c shows
a summarization of the trails in Fig. 12 a. Although summarization
reduces clutter in the raw trails, and shows a simplified view, it also
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removes relevant data points. Also, depending on its parameters, clus-
tering may produce too coarse summarizations which do not convey
finer insights. Finally, clustering alters FPs as it creates and displays
averages of the real FPs – so we cannot use such summarizations to
find where the subjects precisely looked in the input scene (task T1).

To address the above, we apply our KDEEB bundling to the en-
tire eye-tracking trail. Figure 12 b shows the bundling of the trails in
Fig. 12 a. After bundling, several data patterns become clearly visible:

Fixation points: These points (shown red) are the same as in the raw
data, as bundling does not move segment endpoints. This insight is lost
by clustering (Fig. 12 c). Bundling also de-clutters the view by pulling
away the eye trails from FPs, making the latter easier visible.

Scanning: The bundles in Fig. 12 b show that the subject scanned the
image chiefly in vertical and horizontal patterns (task T2). This cor-
relates well with the spatial layout of the SMD plot. A similar insight
was found in [20], based on a more complex visual analysis of the raw
trails. Our bundled plot makes seeing this pattern much easier (com-
pare Figs. 3,4,5,9 in [20] with Fig. 12 b).

Fixation areas: Several star-like patterns formed by short edges link-
ing red FPs with a FAC are visible (like the one located atop of the

top-left plot). These indicate which FPs belong to a FA (task T1). By
comparing these patterns across all multiples, we can see whether the
users scanned similar areas in the maps, e.g., if they viewed all coun-
ties in the twelve maps. From Fig. 12 b, this is not the case – both the
red FACs and the star bundles are quite different for the twelve maps.

Semantic zones: The bundled graph (Fig. 12 b) has three different
zones: At the top, a few bundles (blue markers) ‘link’ the plot title with
the central trails. Half-way, we see the grid-like pattern that encodes
how the subject has visually compared the maps. At the bottom, a long
horizontal bundle covers the footnote text which shows the questions
that users should answer using the plot. This bundle summarizes the
eye motions involved in reading this text. This bundle is connected by
four branches to the central grid-like pattern (green markers). This is
an interesting finding, which shows that the subject switched several
times back-and-forth between reading the task description and actually
performing the task by looking at the SMD plot (task T2).

5.3.2 Eye-tracking for dynamic scenes: Pilot training
Aircraft pilots spend much of their training time in flight simulators.
These include a realistic flight cabin, with steering controls, dashboard
instruments, and computer-generated imagery for the window views.
Just as for car drivers, flight training teaches several scanning patterns
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Fig. 11. Early studies of eye tracking: Static image focused by subjects (a). Eye tracking trails obtained during the image’s free examination (b),
data from [53]. Eye tracking for vehicle driving video: One frame with fixation area density isolines (c). Clustered fixation points (d), data from [12].
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Fig. 12. Eye tracking data of a subject viewing a small multiples display. (a) Raw trails. (b) Bundled trails. (c) Summarized trails (Sec. 5.3.1).

– pilots have to scan the dashboard with a given frequency and in a
certain order [64, 62]. Critical to both pilot training and proficiency
assessment is finding whether a pilot scans the dashboard sufficiently
and visually ‘connects’ the instruments as instructed [58, 34].

Figure 13 a shows a frame from a video recorded in a flight sim-
ulator engine. The simulation was performed with ISAE [33] at the
BEA [2], the French authority responsible for safety investigations into
incidents and accidents in civil aviation. The background shows the
simulator cabin. Bright spots show the lit dashboard instruments, such
as altimeter, artificial horizon, heading indicator, wet compass, turn co-
ordinator, and airspeed meter. The jagged curve in the foreground is
the entire recorded trail of the pilot’s gaze, recorded with the Pertech
system [43] (similar to Figs. 11 b and 12 a). To estimate the FAs, we
compute the trail’s 2D spatial density ρ , using the same technique as
for graph bundling (Sec. 3.2, Eqn. 4). Coloring the trail by ρ using a
heat colormap (yellow=low, red=high) shows several red spots, which
match the FAs. Toggling the trail visualization on and off, we can
check if the FAs correspond to the dashboard instrument locations that
were required to be scanned during the training sequence. However,
just as for the example in Fig. 11 c, this image does not show how the
pilot’s gaze navigated between instruments – in other words, it does
not show the structure of the scanning sequence (task T2).

To recover this structure, we first apply the KDEEB bundling on
the entire trail data. Figure 13 b shows the bundling result color-coded
by the bundled trails’ density. The result is insightful. First, bundling

removes much of the clutter of the original trails, so we now can better
see how FAs match the dashboard instruments. Secondly, and more
importantly, we see that the gaze trail consists of two main patterns:

A. Star-like patterns occur around the fixated instruments and show
the distribution (spread) of FPs in the FAs. These patterns are quite
small and also regularly spread in the x,y directions, which means that
the subject focused in a statistically uniform way over the respective
instruments. The star ‘centers’ are the fixation area centers (FACs).
Since KDEEB uses the same mean shift technique as in [12], it means
that these centers are equivalent to the ones computed by [12] (see
Fig. 11 d). The star ‘branches’ show which FPs belong to a FAC, an
insight not shown in Fig. 11 d. This addresses task T1.

B. Bundles connecting FACs show how the subject’s gaze moved
from instrument to instrument during the training sequence. Es-
sentially, we reduced the trail to an implicit graph whose nodes
are FPs and FACs; short FP-FAC bundles show which FPs belong
to a FAC; and long FAC-FAC bundles show how FACs are related
to each other in the scanning sequence. This addresses task T2.
Analyzing this graph lets us quickly see whether the subject’s gaze
‘connected’ the scanned instruments in the desired pattern or not. For
instance, we see a cross-like pattern in the central area of the image.
Flight experts from ENAC confirmed that this cross corresponds to
a known, desired, dashboard-scanning pattern that pilots have to
obey during their flight (scan several instruments left-to-right and
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Fig. 13. Visual analysis of pilot eye-tracking data, with static bundling. Raw trails (a). Bundled trails (b). Color shows trail density.

back, scan other instruments top-to-bottom and back, then revert the
gaze to the dashboard center). Comparing Fig. 13 b (bundled) with
Fig. 13 a (unbundled), we see that this kind of insight is not visible in
the unbundled (raw) data, but is easily obtainable in the bundled image.

However, the analysis in Fig. 13 removes the time dimension, as
we bundled all eye saccades in a single image. This delivers a coarse
summarization of the eye movement, thus tells us which FAs the sub-
ject visually connected during the entire experiment. However, we
also want to analyze how the gaze dynamics changed across various
time intervals. For this, we use the stream bundling (Sec. 3.2) with a
window ∆ set to a few seconds. Figure 14 shows the results for six
consecutive moments where interesting patterns were detected. In im-
age (a), we see how the pilot’s attention mainly focuses on the central
instruments (FA area A1), while also doing a quick scan of peripheral
instruments (loop L1). Next, the pilot keeps on focusing on the cen-
tral instruments (FA area A2, image (b)), while the peripheral scanning
pattern is similar, but breaks the earlier loop structure. Next, in image
(c), the pilot focuses more on the peripheral instruments, as denoted
by the two scanning loops L3 and L′3, but also keeps an eye on the
central instruments, as these loops are connected to the central screen
area. In image (d), we see a repetition of the initial pattern (a), with
the pilot focusing on the central instruments (A4) and quickly scanning
the periphery (L4). The same pattern persists in image (d), as seen by
comparing A4 vs A5 and L4 vs L5. At the end of the training sequence
(image (f)), the pilot focuses most on two instruments of the dashboard
center, A6 and A′6.

To conclude, both static bundling (Fig. 13) and dynamic bundling
(Fig. 14) of temporal trails are useful, but for different aims, as follows:

• Bundling entire sequences is useful when want to see connection
patterns between fixation areas, regardless of when and in which
order these patterns occurred in time. Hence, static bundling
shows the structure of an entire gaze trail;

• Dynamic bundling is useful when we want to see what the subject
did around a certain moment, and how different moments resem-
ble and/or follow each other. Hence, dynamic bundling empha-
sizes short-term spatio-temporal patterns in the gaze trails.

6 DISCUSSION

6.1 Scalability
Streaming graphs: The streaming method has a complexity of O(|Ẽ|)
per animation frame, where |Ẽ| is the average number of edges in
any time-window of size ∆t in the stream. This is so since we run
the bundling in sync with the stream time, as detailed in Sec. 3.2. In
other words, there is a single density-splat and advection step for each
edge present in a frame. In contrast, StreamEB [41] is O(|Ẽ|2) per
frame. We implemented our dynamic graph visualizations in C# using
a KDEEB implementation using OpenGL 1.1, On a 2.3 GHz PC with
8 GB RAM and an NVidia GT 480, creating one streaming-animation

frame took 0.05 seconds for the US dataset (|Ẽ| = 2K edges on
average) and 0.17 seconds/frame for the France dataset (|Ẽ| = 15K
edges on average). Per frame, we are roughly 10 times faster than the
original KDEEB ([30], Tab. 1). This is expected, as we do only one
iteration per frame (Sec. 3.2). Using FDEB as core bundling technique
requires, for the US dataset, 19 seconds/frame on similar hardware
([28], Sec. 4.2). Using StreamEB for a graph of |Ẽ|= 900 edges on a
1.7 GHz PC requires 6 seconds/frame ([41], Fig. 12).

Graph sequences: The sequence method (Sec. 4.1) is O(BN) for a
sequence of N graphs and a core bundling algorithm of complexity
B. This is identical to StreamEB, modulo the fact that our bundling
algorithm B is faster, as already explained. Also, our animation is
different, since we emphasize (dis)appearing edges and smoothly in-
terpolate consecutive bundled layouts by using edge correspondences.

Online graphs: In graph visualization, we distinguish between online
methods, which can treat graphs as they become available, and offline
methods, where the entire streaming graph or graph sequence must be
known in advance [23, 41]. Both our streaming and sequence visu-
alizations are online methods. For streaming graphs, we only need to
know the edges in a time-window of size ∆ around the current moment.
For graph sequences, we only need to know the previous keyframe
Gi−1 and next keyframe Gi+1 around the current keyframe Gi.

6.2 Static bundling algorithm choice
Streaming graphs: For this case, KDEEB is a good solution: KDEEB
works for general graphs, produces bundles with little clutter even
for complex graphs, and is robust and simple to use. However, most
important point is that KDEEB allows one to incrementally update
the graph during the bundling. In contrast, most other bundling
methods need a full bundling when the input graph changes. This is
due to various technical factors, such as the use of spatial search data
structures and compatibility metrics that need reinitialization upon
graph changes [17, 13, 25, 38], or encoding the bundle polylines sep-
arately from the input graph’s straight-line edges [25, 37, 48]. FDEB
comes closest to KDEEB in flexibility, as it represents (partially)
bundled edges as a set of unstructured polyline curves, so it can be
used for incremental smooth bundling upon graph changes. However,
KDEEB’s linear complexity in the input graph size makes it more
suitable than FDEB which is quadratic in the same input size.

Graph sequences: Here, any bundling algorithm can be technically
used. However, KDEEB proved better than alternatives. Figure 5
shows the differences between HEB (top row) vs KDEEB (bottom
row). HEB produces less structured and compact bundles. A similar
effect can be seen in StreamEB [41]. Figure 6 shows the differences
between using SBEB [17] (top row) vs KDEEB (bottom row). SBEB
produces actually too much structure – the bundles have too many
branches. This is explained by the fact that SBEB needs to discretely
partition the input graph edges into clusters of similar edges, which are
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Fig. 14. Visual analysis of pilot eye-tracking data, with dynamic bundling. Six salient eye-movement patterns are shown (Sec.5.3.2).

next bundled separately. Since clustering is done per keyframe, SBEB
cannot guarantee that clusters vary continuously between keyframes.
In contrast, KDEEB produces less clutter than SBEB, but more struc-
ture than HEB, thereby offering a good visual balance.

6.3 Parameters
Our streaming method uses the same edge sampling, smoothing, ker-
nel size, and density-map resolution parameters as KDEEB [30]. To
these, the streaming method adds the size ∆t and sliding time-step δ t
of the time-window (Alg. 1). ∆t controls how much we see in one
animation frame: Larger ∆t values show more (bundled) edges, but
smooth out the dynamics of the animation. Smaller values show more
of the instantaneous graph G(t), but make short-lived edges (dis)appear
faster. In our examples, we used a ∆t corresponding to a 5% change
in the number of edges in G̃, so that animation goes faster over unin-
teresting time periods, similarly to [41]. δ t controls the ratio of the
animation speed to the stream speed and also the bundling tightness.
Large δ t values subsample the stream, thus make the animation go
faster and show less tight bundles, since bundling occurs in sync with
stream time (Sec. 3.2). Smaller δ t values supersample the stream, thus
make the animation go slower and also create tighter bundles. Getting
tight bundles with KDEEB requires roughly I = 5..10 iterations [30].
Hence, we set δ t to 1/I of the average edge lifetime in the stream. A
good side-effect of this setting is that bundling reflects the edge life-
time: Short-lived edges, likely outliers, do not strongly bundle. Long-
lived edges, which contribute to the coarse-scale graph structure, get
strongly bundled. Apart from ∆t and δ t, our algorithm has no other
parameters.

6.4 Limitations
We showed that we can bundle graph streams and sequences in a fast,
smooth, and clutter-free manner, and that such animations help as-
sessing connection stability and spot fast-changing bundles (Secs. 3.3
and 4.2). However, to see fine-grained events, such as bundle split-
ting or merging or finding similar bundles in far-apart time frames, we
would need further refinements of the visual attributes used (speed,
shape, tightness, and shading of bundles). Also, a quantitative and
qualitative study of the effectiveness of animated bundles is needed.

When graph edges encode relevant spatial information, bundling
introduces the risk of misinterpreting this information in the final
(bundled) image. For dynamic graphs, as compared to static graph
bundling, this risk increases. Indeed, since bundling displaces edges
from their actual positions, dynamic bundling will create edge-motion
patterns which can be far from the actual edge-motion patterns in the
data. However, this does not imply that one should never bundle graphs
in such situations. We see here a gradation of this degree of risk, de-
pending on how this information is precisely used:

A. No relevance: Edge positions do not encode any information be-
sides relations. This is the case of the software graphs in Sec. 4.2.
Here, dynamic bundling has a low risk of conveying ‘wrong’ insight.
The key dynamic patterns of interest are bundle splitting and merging,
and not the precise location or precise motion speed of bundles.

B. Indirect relevance: Edge positions encode relevant information.
However, this information is used only indirectly. This is the case of
the eye-tracking trails in Sec. 5.3, where edges actually describe the
trails of the subject’s gaze. By bundling, we loose the ability to follow
the track of the subject’s gaze. However, we gain the ability to see
coarse-scale patterns such as groups of fixation points, how these are
related to each other by visual scanning, and whether similar scanning
patterns exist in the image. Since eye-motion analysis in the context of
usability and human-machine interaction relies mainly on such patterns
rather than the fine-scale tracking of eye movements, we argue that
bundling is a low-risk and useful instrument in this scenario.

C. Direct relevance: Edge positions encode information directly re-
lated to the questions of interest. An example scenario refers to the
flight trails (Sec. 3.3): If we want to find how flight path spatial dis-
tribution changes over days, we cannot use dynamic bundling, as this
method only shows how the local spatial mean changes over time.

Animation, texturing, and color mapping can show up to three at-
tributes, such as flight height, flight direction, and flight speed atop
of unbundled or streaming bundles (Sec. 5.2). However, we acknowl-
edge that such techniques have limitations. Pulse animation along trails
works well for reasonably crowded areas (Fig. 9 b), but would result
into unreadable high clutter if applied to bundled graphs, like the ones
in Figs. 9 (e,f). Also, the French flight dataset studied so far changes
relatively slowly and continuously in time. As such, users can follow
the corresponding color, texture, and animation changes to decode the
displayed attribute values. For graphs with much higher dynamics,
however, such solutions may not work, and further study is required.

7 CONCLUSION

We have presented two algorithms for the animated visualization of
graph streams and sequences. By exploiting the smoothness, stabil-
ity, speed, and incremental nature of the recent KDEEB image-based
bundling algorithm, we succeed in creating streaming graph anima-
tions which exhibit the same desirable properties. Next, we use the
same algorithm to generate sequence-based graph visualizations where
edge appearance and disappearance events are emphasized. We apply
our techniques on several large datasets from air traffic monitoring,
software engineering, and eye tracking, and present evidence that sup-
ports our choice for KDEEB as underlying layout.

Future work can address animation, visualization, and interaction
refinements to emphasize finer-grained events of interest, such as bun-



dle merging and splitting, and support tasks such as detecting graph
patterns that match problem-specific questions. Also, user evaluations
can help in validating and refining the design choices presented here.
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