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ABSTRACT

Dynamic graphs are increasingly pervasive in modern information
systems. However, understanding how a graph changes in time is
difficult. We present here two techniques for simplified visualization
of dynamic graphs using edge bundles. The first technique uses a re-
cent image-based graph bundling method to create smoothly chang-
ing bundles from streaming graphs. The second technique incorpo-
rates additional edge-correspondence data and is thereby suited to
visualize discrete graph sequences. We illustrate our methods with
examples from real-world large dynamic graph datasets.

Index Terms: I.3.3 [Picture/Image Generation]: Line and curve
generation—

1 INTRODUCTION

Graph visualization supports various comprehension tasks such as
understanding connectivity patterns, finding frequently-taken com-
munication paths, and assessing the overall interaction structure in
relational datasets [41]. Visualizing large graphs is challenging, due
to inherent clutter, crossing, and overdraw problems [41, 8, 38]. Edge
bundling methods have gained strong attention recently as a way to
depict the overall connectivity pattern of large graphs by trading clut-
ter for overdraw [25, 8, 38, 16, 22, 12, 18].

Dynamic graphs pose their own understanding challenges. The
data volumes are far larger than for static graphs. Users are interested
in spotting changes in the overall graph structure, while maintaining
limited clutter. Bundling methods, a promising option to compactly
depict dynamic graph changes, have however been mainly used for
static graphs.

In this paper, we present two types of techniques for visualizing
dynamic graphs using edge bundles. The first technique consid-
ers streaming graphs, i.e. temporally ordered, unstructured, edge-
sequences with start and end lifetime moments. For this use-case,
we extend a recent fast and clutter-free static-graph bundling method.
The second technique considers graph sequences, i.e. a discrete set of
graphs between which higher-level correspondences can be inferred.
For this use-case, we exploit additional edge-correspondence infor-
mation to further highlight events of interest such as the appearance,
change, and disappearance of edge groups, and show results based on
different underlying static bundling algorithms. We present efficient
GPU implementations of both our techniques which scale to large
dynamic graphs, ensure spatial and temporal continuity (i.e. preserve
the user’s mental map), and are simple to implement. We demonstrate
our techniques on real-world dynamic graphs from the air-traffic and
software engineering application domains.

The structure of this paper is as follows. Section 2 presents related
work on dynamic graph and bundled graph visualization. Section 3
details our visualization method for streaming graphs. Section 4
presents our visualization method for graph sequences. Section 5
discusses the two methods in terms of desirable features. Section 6
concludes the paper.
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2 RELATED WORK

2.1 Preliminaries
Dynamic graphs can be organized in two categories, as follows.
Streaming graphs are defined as graphs G = (V,E) on a vertex-set
V and edge-set E, where edges

e ∈ E = {nstart(e) ∈V,nend(e) ∈V, tstart ∈ R, tend ∈ R} (1)

are defined by their start and end nodes nstart and nend , and lifetime
[tstart , tend > tstart ]. A weak form of Eqn. 1 can be used to model
streaming graphs where only an ordering of the tstart and tend values
is specified, rather than absolute values. Streaming graphs occur nat-
urally in cases when an entire graph is not known in advance, e.g.
events collected from live data sources [1].

Graph sequences are defined as ordered sets of graphs Gi =
(V i,E i) which typically capture snapshots of the structure of a sys-
tem at N moments 1 ≤ i ≤ N in time. We further call a graph Gi in
such a sequence a keyframe. In contrast to streams, edges are explic-
itly grouped in keyframes, and additional semantics can be associated
with each such keyframe. Following this, sequences may contain so-
called correspondences

c : E i→{{ecorr ∈ E i+1},∅} (2)

Here, c(e ∈ E i) yields an edge ecorr ∈ E i+1 which logically corre-
sponds to e (if such an edge exists), or the empty set (if no such edge
exists). Correspondences model edge-pairs in consecutive keyframes
that are related from an application perspective, e.g. caller-callee re-
lations between the same function definitions in consecutive revisions
of a software system.

2.2 Dynamic graph visualization
Visualizing changing graphs has a long history. Methods can be di-
vided into two classes, as follows.

Unfolding the time dimension along a spatial one, e.g. using the
“small multiples” approach [4], has led to many dynamic graph visu-
alizations. In graph drawing, specific solutions are known for planar
straight-line graphs [3]. In software visualization, TimelineTrees [5],
TimeRadarTrees [6], and TimeArcTrees [37], and CodeFlows [37]
lay out a graph along a 1D space, e.g. circle or line, and juxta-
pose several such instances on an orthogonal axis to show the graph
evolution. Although reducing clutter by not using a node-link draw-
ing metaphor, such methods are visually not highly scalable, nor are
they very intuitive, especially for long time series containing complex
event dynamics.

Producing an animation of the graph’s evolution is a second way
to understand dynamic graphs. Several techniques generate incre-
mental node-link drawings that show the graph evolution by opti-
mizing a cost function that combines classical static-graph-drawing
aesthetic criteria with maximizing the layout stability of unchanging
graph parts [15, 13, 14, 20]. Animation can be preferable to small-
multiples in conveying dynamic patterns, especially for long repeti-
tive time series [39]. Such methods, however, may suffer from visual
clutter, due to the underlying node-link metaphor.

2.3 Bundled edge graph visualization
Edge bundling techniques trade clutter for overdraw by routing re-
lated edges along similar paths. Clutter causes and reduction strate-
gies are discussed in [11]. Bundling can be seen as sharpening the



edge spatial density, by making it high along bundles and low else-
where [22]. Bundling improves readability for finding node-groups
related to each other by edge-groups (bundles) which are separated
by white space [16, 38], i.e. produces images where high-level graph
structures should be easy to follow, while details (individual edges)
are emphasized less.

Dickerson et al. merge edges by reducing non-planar graphs
to planar ones [9]. Holten bundled edges in compound graphs
by routing edges along the hierarchy layout using B-splines [18].
Gansner and Koren bundle edges in a circular node layout similar
to [18] by area optimization metrics [17]. Dwyer et al. use curved
edges in force-directed layouts to minimize crossings, which implic-
itly creates bundle-like shapes [10]. Force-directed edge bundling
(FDEB) creates bundles by attracting edge control points [19], and
was adapted to separate opposite-direction bundles [34]. The MIN-
GLE method uses multilevel clustering to accelerate the bundling
process [16]. Flow maps produce a binary clustering of nodes in
a directed flow graph to route curved edges [30]. Control meshes
are used to route curved edges, e.g. [31, 43], a Delaunay-based
extension called geometric-based edge bundling (GBEB) [8], and
’winding roads’ (WR) which use Voronoi diagrams for 2D and 3D
layouts [25, 24]. Skeleton-based edge bundling (SBEB) uses the
skeleton of the graph drawing’s thresholded distance transform as
bundling cues to create strongly ramified bundles [12].

To render bundles, edge color interpolation for edge direc-
tions [18, 8] and transparency or hue for edge density or for edge
lengths [25, 12] are used. Bundles can be drawn as compact shapes
whose structure is emphasized by shaded cushions [38, 33]. Graph
splatting visualizes node-link diagrams as smooth scalar fields using
color and/or height maps [40, 23]. To explore crowded areas (over-
lapping bundles), semantic lenses can be used [21].

2.4 The challenge of bundling dynamic graphs
Given the above, it seems appropriate to use edge bundling to visual-
ize the (simplified) structure of dynamic graphs. Pioneering work
in this area has been recently done by Nguyen et al., who cut a
streaming graph into a set of graphs using a sliding time-window,
and visualize each such graph using existing edge-bundling meth-
ods [19, 18]. Edge similarity, or compatibility, is enhanced to take
into account temporal coherence. Given a stable edge-bundling lay-
out, this method can produce animations of bundled graphs with spa-
tial and temporal continuity.

This approach can be improved in several directions: scalability
(number of edges handled), ensuring a high spatio-temporal continu-
ity of the produced animations where large-scale and long-life struc-
tures are stable over time and display space, and using the correspon-
dence information present in graph sequences. We next present two
edge bundling methods for streaming and sequence graphs which in-
corporate the above-mentioned improvements.

3 VISUALIZING STREAMING GRAPHS

Given a graph G, which includes (2D) node positions, we can think
of (2D) bundling as an operator B : G→ R2 which creates a drawing
B(G) which maps edges that are close in G to close spatial posi-
tions (bundles) [22]. Different bundling algorithms propose different
ways to model edge closeness in G: tree-distance of edge end-nodes
in a hierarchy [18], closeness of edges in a straight-line drawing of
G [12, 19, 22], or the more general combination of graph-theoretic
and image-space distances [28].

Consider now a streaming graph (Eqn. 1), the “instantaneous”
graph G(t) = {e ∈ G|t ∈ [tstart(e), tend(e)]} and its bundling B(t) =
B(G(t)) by some bundling operator B. Ideally, we want that B(t)
(a) varies continuously, or smoothly, in time with respect to the in-
put G(t) and also (b) keeps the spatial properties of the underlying
bundling operator B, i.e., puts close edges in tight bundles.

Property (b) is readily satisfied by using a “good” bundling algo-
rithm B that guarantees that for any input graph, the result will be

(strongly) bundled, such as e.g. [16, 25, 8, 12, 22], or to a lesser ex-
tent [18, 19], as we shall see. Property (a) means that, when G(t)
changes only slightly, then B(G(t)) should also change only slightly,
so graph structures which are stable in time are also stable in the final
visualization. Conversely, if there is an abrupt change in the graph,
then there should be a visible change in the animation. However,
even in the presence of such large changes in the input, discontinu-
ous bundle jumps in the animation should be avoided, since visually
tracking such jumps is hard.

A partial answer to (a) can be achieved by reducing the dynamics
of G(t), e.g. by applying a low-pass filter to G(t). In other words, the
bundling result shown at moment t is B(G̃(t)) where G̃ is the filtered
graph. This is the solution proposed by StreamEB, who pioneered
bundled layouts for streaming graphs [28]. They use a sliding win-
dow technique (finite-support box filter) to compute G̃ as all edges
alive in [t, t +∆t].

However, this approach has two limitations. First, the smoothness
of the final animation depends strongly on the variation rate of G̃. If
graphs for two consecutive time moments G̃(t) and G̃(t +∆t) differ
too much, e.g. there are too many edges added or deleted per time
unit, or the filtering time-window is too small, then there is no guar-
antee that the corresponding bundlings B(G̃(t)) and B(G̃(t +∆t)) are
spatially close. If this is not the case, users notice a disruptive visual
jump from t to t +∆t. Secondly, the computational efficiency of the
approach in [28] strongly depends on the scalability of the underly-
ing static bundling operator B. Algorithms which ensure good spatial
stability, e.g. [19, 8] are also quite expensive, roughly O(|Ẽ|2) for |Ẽ|
edges in G̃(t). Faster bundling algorithms [16, 12, 25] cannot ensure
continuity, i.e., a small change in the input graph may generate a large
change in the bundled image, so are less suitable for stream bundling.

3.1 Algorithm
We address the above challenges by exploiting the properties of
a recent bundling method for large graphs: kernel-density estima-
tion edge bundling (KDEEB) [22]. Given a graph drawing G =
{ei}1<i<N , KDEEB estimates the spatial edge density ρ : R2→ R+

ρ(x) =
N

∑
i=1

∫
y∈ei

K
(

x−y
h

)
(3)

where K : R2 → R+ is an Epanechnikov kernel of bandwidth h.
KDEEB iteratively moves each point x of each edge upstream along
∇ρ following

dx
dt

=
h(t)∇ρ(t)

max(‖∇ρ(t)‖,ε)
(4)

where ε is a small normalization constant. After a few Euler itera-
tions for solving Eqn. 4, during which one decreases h and recom-
putes ρ , edges converge into bundles. A final 1D Laplacian smooth-
ing pass is done on edges to remove small wiggles. Full details are
given in [22]. Upon a closer analysis (not reported by the KDEEB
authors), one can see that this process is nothing else but performing
the well-known mean-shift algorithm [7] on the drawn edges. In other
words, the bundled graph is a clustering of the graph drawing based
on edge similarity. This observation is important, since smoothness,
noise robustness, and stability results proven for mean shift [7] can
be readily extrapolated to KDEEB.

Core to KDEEB is the fast computation of the density map ρ . This
is done by splatting the kernel K, encoded as an OpenGL texture,
into an accumulation map. This allows bundling graphs of tens of
thousands of edges in a few seconds on a modern GPU.

Our main idea for bundling streaming graphs is now to let the
KDEEB iterations vary in sync with the stream time t. The principle
is simple (see also Algorithm 1): We move a sliding window [t, t+∆t]
over the entire time range of the input streaming graph, compute ρ(t)
from the graph G̃(t), and advect edges following Eqn. 4. There
are two key advantages to this approach. First, ρ(t) can be very



efficiently computed by the underlying KDEEB algorithm, which
is O(|Ẽ|), i.e. proportional to the edge count in the current graph
G̃. Secondly, and most importantly, the original KDEEB required
I = 5..10 iterations for a single static graph to be bundled. We re-
move this iterative process by letting G̃ bundle while sliding the time-
window. This makes sense since (a) if G̃ changes very slowly, ad-
vancing the stream time t is nearly equivalent to performing itera-
tions for a fixed t, so we obtain a strongly bundled G̃, which is what
we want to see. If (b) G̃ changes rapidly, then our process has less
time to bundle, and thus we see looser bundles, which conveys us
precisely the dynamics of G̃. More details on performance and pa-
rameter settings are given in Sec. 5.2.

1 t← 0
2 while stream not ready do
3 ρ ← 0
4 Elive←{e ∈ E|[tstart(e), tend(e)∩ [t, t +∆t] 6=∅}
5 foreach e ∈ Elive do
6 splat e into ρ ; //Splat live edges (Eqn. 3)
7 end
8 foreach e ∈ E|tend(e) ∈ [t−δ t, t] do
9 relax e towards its original position ; //Vanishing edges

10 end
11 foreach e ∈ Elive do
12 advect e one step ; //See Eqn. 4
13 apply 1D Laplacian smoothing on e ;
14 draw e in the visualization ;
15 end
16 t← t +δ t ; //Advance sliding window
17 end

Algorithm 1: Bundling streaming graphs with KDEEB

Intuitively, our dynamic bundling method can be thought of as a
process where edges continuously track the local density maxima of
a dynamically-changing graph. Since at each advection step edges
move with a bounded amount h (line 12, Alg. 1), and since advection
is done while advancing the stream time t, the maximal amount an
edge-point can move at any time is h (Eqn. 4). Hence, the bundles
move smoothly on the screen.

For disappearing edges, we can perform an additional step: We in-
terpolate these edges from their current (bundled) position towards
their original (unbundled) position they had in the input stream
(line 9, Alg. 1). This makes the animation symmetric: New edges
progressively bundle as times goes by, while disappearing edges re-
lax, or unbundle, towards their original positions after exiting the
sliding time-window. To further emphasize this effect, we modulate
the edges’ transparencies in a similar fashion. We note that this effect
is optional. If left out, disappearing edges will exit silently, without
relaxation. The choice of using relaxation or not depends on whether
users want to see edge-vanishing events or not.

An important goal of animated visualizations is to help users de-
tect deviations from regular patterns [39, 41]. We support this by
shading bundles to convey their speed of change, using a simple and
fast image-based method: We compute the density moving-average
ρ̃(t) over [t, t +∆t], and color bundles by the normalized difference
|ρ(t)− ρ̃(t)|/ρ̃(t) using a white-to-purple colormap. Results are
shown next.

3.2 Applications
Figure 1 shows several frames from a streaming visualization of US
flights [36] (6 days, 41K flights). The streaming graph contains
flights with start and end date-and-time and geographical locations.
The resulting flight-trail bundles are smooth, clutter-free, and exhibit
a continuous variation in time1. From the stills, we see that same

1For this and the other examples next, see the submitted videos.

time-of-day flight patterns are quite similar for several days. How-
ever, they vary strongly over a day: During the evening, the East
coast has the most intense traffic. During the afternoon, the entire US
is quite uniformly covered with flight routes. During the night, flights
linking the two coasts dominate.

Figure 2 shows a similar visualization for flights over France (7
days, 54K flight trails). Similar to the US dataset, bundles are smooth
and clutter-free in both space and time. Colors indicate the bundles’
speed of change (white=stable, purple=rapid changes, see Sec. 3.1).
Red dots show the first and last positions when a plane was moni-
tored. Dots inside France are actual airports. Dots outside the French
territory indicate international flights which enter/exit the French
airspace. We see that, during the day, the main “backbone” flight
pattern is quite stable over different days, and contains mainly north-
south routes, with Paris as a key hub (Fig. 2 top row). A different
pattern, also quite stable, appears at night (Fig. 2 bottom row): A
salient vertical bundle shows Southern flights bound to Paris. We
also see more purple, which shows that night-time flight paths are
much less stable than during-the-day flight paths.

For the US dataset, a qualitative comparison of our results with
StreamEB [27] shows that KDEEB produces stronger bundles and an
overall smoother animation. This is first due to the fact that KDEEB
can produce bundles with many inflexion points, while FDEB has a
smoothing factor built in its edge compatibility metric that disfavors
such shapes. Secondly, this is due to the built-in smoothness of our
method which bundles edges as they arrive in the input stream.

4 VISUALIZING GRAPH SEQUENCES

Graph sequences Gi (Sec. 2.1) exhibit different properties from
streaming graphs, as follows. First, streams allow defining an infinity
of “instantaneous” graphs G(t) = (V,{e∈E|tstart < t < tend}),∀t ∈R
(see Sec. 3.1). Some of these graphs may not have a direct meaning or
usefulness. In contrast, graph sequences contain a finite set of graphs
which have been explicitly computed in specific ways, e.g. for par-
ticular time moments, e.g. (major) revisions of a software system.
Secondly, keyframe correspondences add higher-level, edge-centric,
information, e.g. the fact that two files f1, f2 share a common piece of
text in version 1, and next f1 shares the same text with a file f3 in ver-
sion 2. In contrast, streaming graphs (Eqn. 1) only specify how edges
appear and disappear in time, but do not necessarily encode logical
connections between edges at different time moments. Thirdly, graph
sequences do not necessarily come with birth and death moments
for individual edges. Finally, keyframes in graph sequences must
be wholly available before processing, whereas edges in a streaming
graph can be, in most cases, analyzed “online” as they appear. All
in all, the above make a case for treating graph sequences differently
from graph streams.

4.1 Algorithm
For graph sequences, we propose the following bundling method: For
each keyframe Gi, we compute its bundled layout Bi = B(Gi), using
a given bundling algorithm B. Next, we interpolate these layouts be-
tween a keyframe i and the previous and next keyframes i− 1 and
i+ 1 respectively using the correspondence data (see Fig. 3). Con-
sider a time axis t along which we place keyframes e.g. at moments
ti = i∆t (any other definition of ti can be easily used, if available).
For each edge e ∈ Gi, if c(e) = ei+1 ∈ E i+1, we linearly interpolate
Bi(e) to Bi+1(ei+1) over the interval [ti, ti+1] (Fig. 3D). If c(e) is the
empty set, i.e. e has no correspondence in E i+1, we interpolate Bi(e)
to the line segment L(e) = (nstart(e),nend(e)) over the same time in-
terval (Fig. 3B). Symmetrically, if c−1(e) = ei−1, we interpolate from
Bi−1(ei−1) to Bi(e) over [ti−1, ti] (Fig. 3A), else we interpolate from
L(e) to Bi(e) over the same time interval (Fig. 3C).

We emphasize appearing and disappearing edges by shading:
Edges that have correspondences between two keyframes i and i+1
are blue and thick. Edges that disappear from i to i+ 1 get a color
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Figure 1: Streaming visualization for 6-days US airline flight dataset (Sec. 3.2)
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Figure 3: Interpolation for graph sequence visualization

linearly interpolated between blue (at ti) and green (at tmid = ti+ti+1
2 ),

and next get the transparency (alpha) value decreasing from opaque
(at tmid) to fully transparent (at ti+1). Edges that appear from i− 1
to i get an alpha increasing from fully transparent (at ti−1) to opaque
(at tmid), followed by a color interpolated from red (at tmid) to blue
(at ti). Hence, edges appear by fading in to red (highlights their in-
coming), then smoothly merge in a blue bundle, and disappear by
unbundling, becoming green (highlights their vanishing), and fading
out. Examples next explain the color choice.

4.2 Applications
We illustrate our sequence-graph visualization with two datasets
from software engineering. The first dataset contains 22 releases of
Mozilla Firefox [26]. For each revision, we extracted the code hier-
archy (folders and files), and also the so-called clones, or code dupli-
cates, using the freely available clone detector SolidSDD [32, 35].
Hence, for each revision, we obtain a compound hierarchy-and-
associations graph where two files are linked by an edge if they share
a code duplicate. If a code fragment is cloned in several files, then all
these files are pair-wise linked by associations.

Figure 4 shows snapshots from SolidSDD’s HEB visualization

for such graphs. Node colors show duplication amount (red=high,
green=low). Seeing how subsystems share clones is useful in perfec-
tive maintenance, where one needs to plan code clone removal with
minimal impact on system architecture. It is also important to assess
how much, and where, did adaptive maintenance (i.e. adding new
features) introduce new clones, and how much, and where, did per-
fective maintenance succeed to remove clones in the past [29]. For
this, we need to easily compare the clone evolution patterns. This is
hard to do using such small-multiple visualizations.

To support such a task, we proceed as follows. First, we create a
so-called union hierarchy containing all graph nodes in the analyzed
releases [2]. This contains 13856 file and folder nodes. Next, we
build correspondences between clones in consecutive releases: Two
clone relations ei and ei+1 correspond if they link the same files, i.e.
files having the same fully qualified names, in Gi and Gi+1. Other
ways to find correspondences, e.g. using the actual text content of
the clones [29], can be readily used too, if desired. The above steps
deliver a graph sequence Gi in the sense described in Sec. 2.1. This
sequence contains 5687 unique edges (that is, when counting corre-
sponding edges as one) and 48591 edges in total.

We now use our graph-sequence visualization to analyze this se-
quence. Figure 5 shows several frames from this animation (see
submitted videos). The bottom row shows results produced using
KDEEB as underlying bundling method. Disappearing edges are
green (removing clones is good); appearing edges are red (introduc-
ing new clones is bad). Additionally, we color hierarchy nodes as
follows: Nodes which contain a changing clone count are colored by
the clone count change, using red for positive values and green for
negative values. Nodes where the clone count stays constant are col-
ored blue. In all cases, we use saturation to indicate absolute values
(saturated=high, desaturated=low values).

We note several events of interest. First, there is a relatively stable
“core” clone-structure that lives for a long time (blue bundles). These
can be hard to remove clones, or clones that maintainers were not
aware of, e.g. if no clone detector was actively used on this system
during perfective maintenance. We also spot several moments when
major clone-pattern changes occur, e.g. from revision 2.0.0.10 to 3.0,
many green edges appear, so many clones are removed (Fig. 5 d).
Node coloring helps spotting high-clone-density subsystems. For in-
stance, from revisions 3.6.10 on, we see two such dark-blue groups
(dotted circles in Fig. 5 bottom row, e-h). Since these groups stay
visible in several revision, they indicate “stubborn” clones which, for
several reasons, could not be removed for a long time. Although this
information is encoded in the bundles too, finding such patterns on
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Figure 2: Streaming visualization for 7-days France airline flight dataset (Sec. 3.2)

revision 0.8 revision 3.0 revision 3.5 revision 10.0 revision 11.0

Figure 4: Small multiples visualization for clones in Mozilla Firefox for five selected revisions (Sec. 4.2)

nodes is easier than visually following bundles. In other words, node
colors help finding aggregated patterns, e.g. high-clone-density sys-
tems during the evolution, while bundle changes help seeing which
particular subsystems share such clones. We also see a red spot in
revision 2.0.0.10 (Fig. 5 c): This is a subsystem where many intra-
system clones have been added. Seeing such clones without node
coloring would be hard, since their (bundled) edges are very short.

The transition between revisions 7.0 and 8.0 shows an interest-
ing event: First, several “stubborn” clones are removed (green edges
shown after passing revision 7.0) Next, clones between the same
files are added back again (red edges shown when approaching revi-
sion 8.0). This typically happens when one modifies related code in
two subsystems e.g. by rewriting it by independently applying twice
the same given design pattern. However, developers were likely not
aware of the clones, otherwise we would expect the clone to be re-
moved during such a perfective refactoring. Finally, comparing the
first and last frame shows that the core clone pattern did not change
significantly. Also, the bundle pattern shows that clones connect un-
related subsystems, i.e. nodes in the radial icicle plot that are not
close to each other, hence not in the same parent system. This is a
negative sign for code quality, since removing such clones requires
system-wide understanding and refactoring.

As a second example, we extracted a compound digraph with fold-

ers, files, and functions (forming the hierarchy) and function calls
(forming the associations) from 14 revisions of the Wicket open-
source software [42]. Next, we build the same union hierarchy as in
the first example (8799 nodes), and compute correspondences based
on the fully qualified signatures of (caller, callee) pairs. We obtain
11953 unique edges and 92810 total edges. Figure 6 shows several
frames from the graph-sequence visualization. To better illustrate
the animated transitions, we focus here on a short period (three revi-
sions). This visualization helps reasoning about the system’s (change
of) modularity, a challenging task in program comprehension [2].
The interpretation is as follows: The stable pattern (blue bundles)
shows the stable control-flow logic of the system, i.e. calls that do
not change much across versions. We see that this pattern is quite
complex, i.e. connects many subsystems in different hierarchy parts,
so the overall modularity of this software is and stays relatively low.
In more detail, we see that in version 1.4.18, a significant coupling
is added between systems A and B (large red bundle A-B, Fig. 6 c).
Interestingly, at the same moment (1.4.18), many calls are removed
between the same systems (large green bundle A-B, Fig. 6 f). This in-
dicates a refactoring of the A-B system interaction – note the similar-
ity with the clone insertion-and-deletion pattern and its interpretation
discussed above for the Firefox dataset.
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5 DISCUSSION

5.1 Streaming vs sequence graphs
In Sections 3 and 4 we have presented two techniques for visualizing
streaming and sequence graphs. One question is: Can we use the
streaming algorithm for a sequence graph, and/or conversely? Why
do we need two techniques? Below we analyze this aspect.

5.1.1 Streams with sequence-based visualization
For the first experiment, we convert our France air-traffic streaming
graph (Sec. 3.2) to a sequence graph of 7 keyframes. For this, we
divide the 7-days stream into 7 one-day periods. Edges are assigned
to keyframes based on start time. Next, we add correspondences be-
tween edges in consecutive keyframes (days) whose geographic start
and end locations are very similar and flight IDs are identical. We ob-
tain a 7-keyframe sequence, with 8811 unique edges (when counting
corresponding edges as one), and 54K edges in total.

The attached videos show a sequence-based visualization of this
dataset. As visible, bundled patterns are much less structured, and
their change is harder to follow. This is not too surprising, since the
stream-to-sequence conversion quantized the fine-grained time infor-
mation. Hence, while the streaming-based visualization uses this in-
formation to continuously bundle edges as they appear, the sequence-
based visualization only bundles at keyframes, and uses edge inter-
polation in between. Additionally, visualizing streams as graph se-

quences involves delicate data modifications, e.g. cutting the stream
at possibly irrelevant moments into disjunct chunks, and adding edge-
correspondences that may not be meaningful. When such a transfor-
mation is not evident, and when fine-grained time data is important
for comprehension, one should not visualize graph streams as graph
sequences.

5.1.2 Sequences with stream-based visualization

For the second experiment, we convert our Wicket graph sequence
(Sec. 4.2) to a streaming graph, by inserting 100 uniformly-spaced
time moments between each two consecutive keyframes. Figure 7
shows three frames from the resulting animation, taken between re-
visions 1.5.0 and 1.5.1. The sequence method (top row) clearly shows
a stable core indicating unchanging call patterns (blue bundles), and
also outlines the removed calls (green) and added calls (red). The
streaming method (bottom row), although doing a good job in creat-
ing a smooth and stable bundling, cannot emphasize such additions
and removals, since it has no correspondence data to separate the
treatment of stable and (dis)appearing edges.

5.2 Scalability

The streaming graph visualization 3.1 has a complexity of O(|Ẽ|)
per animation frame, where |Ẽ| is the average number of edges in
any time-window of size ∆t at any moment t in the stream. This is
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Figure 7: Streaming visualization of graph sequence (3 frames around revision 1.5.0, Wicket software dataset)

so since we run the bundling process in sync with the stream time, as
explained in Sec. 3.1. In other words, there is a single density-splat
and advection step for each edge present in a frame. In comparison,
the method in [28] is O(|Ẽ|2) per frame. We implemented our graph
streaming and sequence visualizations in C# using the KDEEB algo-
rithm which is itself written in C# using OpenGL 1.1, and run them
on a 2.3 GHz PC with 8 GB RAM and an NVidia GT 480 card. On
this platform, producing one streaming-animation frame took 0.05
seconds for the US dataset (|Ẽ| = 2K edges on average) and 0.17
seconds/frame for the France dataset (|Ẽ| = 15K edges on average).
Per frame, we are roughly 10 times faster than the original KDEEB
([22], Tab. 1), which is expected, as we do only one iteration per
frame (see Sec. 3.1). In contrast, if we were to use FDEB, we would
need, for the US dataset, 19 seconds/frame on comparable hardware
([19], Sec. 4.2), or 6 seconds/frame for a graph of |Ẽ| = 900 edges
on a 1.7 GHz PC ([28], Fig. 12). Of course, the total time needed for
a stream depends on the stream’s length.

The sequence graph visualization (Sec. 4.1) has a complexity of
O(BN) for a sequence of N graphs, and an underlying bundling al-
gorithm of complexity B. This is basically the same cost as in [28],
modulo the fact that our algorithm B is faster, as already explained.
However, note that our visualization is different, since we (a) empha-
size appearing and disappearing edges and (b) smoothly interpolate
consecutive bundled layouts by using edge correspondences.

5.3 Bundling algorithm choice

For streaming visualizations, KDEEB is arguably a very good solu-
tion: KDEEB works for general graphs, produces bundles with lit-
tle clutter even for very complex graphs, and is robust and simple
to use. However, the most important point is that KDEEB’s design
allows to incrementally update the graph during the bundling. In con-
trast, most other bundling layouts require a full recomputation of the
bundling when the input graph changes. This is due to various tech-
nical factors, e.g. use of spatial search data structures and compatibil-
ity metrics that need reinitialization upon graph changes [12, 8, 16],
or encoding the bundle polylines separately from the input graph’s
straight-line edges [16, 25, 34]. FDEB comes closest to KDEEB in
flexibility, as it represents (partially) bundled edges as a set of un-

structured polyline curves, so it can be used for incremental smooth
bundling upon input graph changes. However, KDEEB’s linear com-
plexity in the input graph size makes it more suitable than FDEEB
which is quadratic in the same input size.

For sequence visualizations, any bundling algorithm can be tech-
nically used. However, here KDEEB also proved better than alterna-
tives. Figure 5 shows the differences between using HEB (top row)
vs KDEEB (bottom row). As visible, HEB produces less structured
and compact bundles. A similar effect can be seen in StreamEB [28].
Figure 6 shows the differences between using SBEB (top row) vs
KDEEB (bottom row). Here, SBEB produces actually too much
structure – the bundles have too many branches. KDEEB produces
less clutter than SBEB, but more structure than HEB, thereby offer-
ing a good visual balance.

5.4 Parameters

Our streaming-based visualization uses the same edge sampling,
smoothing, kernel size, and density-map resolution parameters as
KDEEB [22]. The parameters added by our streaming method are
the size of the time-window ∆t and time-step δ t for sliding this win-
dow (see Alg. 1). ∆t controls how much one sees in one animation
frame: Larger ∆t values show more (bundled) edges, but inherently
smooth out the dynamics of the animation. Smaller values show
more of the instantaneous graph G(t), but make short-lived edges
(dis)appear faster. In our examples, we used a ∆t corresponding to a
5% change in the number of edges in G̃, so that animation goes faster
over uninteresting time periods, similarly to [28]. δ t controls the
ratio between the animation speed and the stream’s own speed and
also the bundling tightness. Large δ t values subsample the stream,
i.e. make the animation go faster and show less tight bundles, since,
as outlined in Sec. 3.1, bundling occurs in sync with the stream time.
Smaller δ t values supersample the stream, i.e. make the animation go
slower and also create tighter bundles. In practice, getting tight bun-
dles with KDEEB requires roughly I = 5..10 iterations [22]. Hence,
we set δ t to 1/I of the average edge lifetime in the stream. A good
side-effect of this setting is that bundling reflects the edge lifetime:
Short-lived edges, likely outliers, do not strongly bundle. Long-lived
edges, which contribute to the coarse-scale structure of the graph, get



strongly bundled. Apart from ∆t and δ t, our algorithm has no other
parameters.

5.5 Limitations
Currently, we showed that we can bundle graph streams and se-
quences in a fast, smooth, and clutter-free manner, and that such an-
imations help assessing connection stability and spot fast-changing
bundles (Secs. 3.2 and 4.2). However, the animation and visual map-
ping metaphors, i.e. speed, shape, tightness, and shading of bundles,
would need to be adapted to support seeing finer-grained events of
interest such as bundle splitting, or merging; similar bundles in far-
apart time frames; and separating bundles based on additional edge
attributes. Also, a quantitative and qualitative measurement of the
effectiveness of animated bundles is needed.

6 CONCLUSION

We have presented two algorithms for the animated visualization of
graph streams and sequences. By exploiting the smoothness, sta-
bility, speed, and incremental nature of the recent KDEEB image-
based bundling algorithm, we succeed in creating streaming graph
animations which exhibit the same desirable properties. Next, we
use the same algorithm to generate sequence-based graph visualiza-
tions where edge appearance and disappearance events are empha-
sized. We apply our techniques on four large datasets, and present
evidence that supports our choice for KDEEB as underlying layout.

Future work can address animation, visualization, and interaction
refinements to find and emphasize finer-grained events of interest,
such as bundle merging and splitting, and support tasks such as de-
tecting graph patterns that match problem-specific patterns of inter-
est. Furthermore, user evaluations can help in validating and refining
the design choices presented here.
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