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Abstract. In this work, we present a methodology to minimize the number of po-

tential conflicts between aircraft trajectories based on route-slot allocation tech-

niques. The traffic assignment problem is modeled as a combinatorial optimization

problem for which two metaheuristic optimization algorithms are developed and

implemented. The first algorithm relies on a standard simulated annealing, while

the second algorithm uses a hybrid-metaheuristic method. The proposed algorithms

were implemented and tested on real air-traffic data for which an optimal solution

for every trajectory is obtained within affordable computation time.

Keywords. 4D trajectory planning, Strategic deconfliction, Hybrid-metaheuristic

optimization

Introduction

Air Traffic Management (ATM) paradigm in Europe is evolving around the Trajectory

Based Operations (TBOs) concept, where air traffic is no longer constrained by artificial

boundaries such as airspace sector boundaries, national borders, locations of beacons,

etc. Instead, ATM will focus on trajectories together with an adapted airspace design.

This new ATM concept of operations implies a possibility to resolve potential conflicts

between aircraft trajectories in the strategic trajectory planning phase. This strategic de-

conflicting will alleviate the air traffic controller’s tactical conflict resolution workload.

More efficient trajectories with minimal number of potential conflicts can be strategically

designed from a more global point of view, anticipating downstream effects. Once the

aircraft is cleared to fly its reference business trajectory (optimal conflict-free trajectory),

the controller’s workload will thereby involve more monitoring and less conflict predic-

tion and resolution. As a consequence, the needs of tactical intervention being reduced,

more flights will be accommodated by the controller in a given airspace at a given time.

In this work, we propose a methodology to minimize the number of potential con-

flicts between aircraft trajectories for a full traffic day at the strategic level, using bi-

allocation (route-departure slot allocation) techniques. This air traffic assignment prob-

lem is modeled as a combinatorial optimization problem for which two metaheuristic

optimization approaches have been implemented and compared. The first proposed op-

timization approach relies on a standard Simulated Annealing (SA) algorithm, and the

second one uses a hybrid optimization method. The proposed methodology was imple-

mented and tested on a full day air traffic over the French airspace.



The remaining of this introduction surveys previous research work. Over past

decades, several methods have been proposed to address the air traffic management prob-

lem aiming at balancing the air traffic demand and the airspace capacity, and to ease

airspace congestion. There are two frequently-used strategies, the first one is to adapt the

airspace capacity to the increasing demand. This strategy was, for example, considered

in [6,20,16].

Another strategy is to regulate the demand to the current capacity which can be ac-

complished by optimizing the allocation of flight plans. This strategy is usually referred

as air traffic flow management (ATFM). It aims at controlling and organizing the air traf-

fic flow so as to minimize the airspace complexity, to ease the controller workload as

well as to maximize the use of airspace. The best known approach based on this strat-

egy is the ground delay allocation which presented, for instance, in [17], [22], and [2].

This approach attributes ground delay to aircraft before take-off taking into account the

airspace sector and airport capacity. Delaying aircraft on ground reduces fuel consump-

tion due to extra distance aircraft has to fly in order to avoid congested areas. However,

with the increasing demand, significant delays have to be imposed in order to address all

the congestion.

In recent years, many ATM work based on deterministic and stochastic optimization

approaches were proposed. In a large-scale problem, the air traffic is usually modeled

as a network flow model. Integer Linear Programming (ILP) is often used to address

such problems, such as in [3] where a route is represented by a sequence of sectors

flown over by an aircraft, or in [4] where ILP adapted for large-scale ATFM problems

considering all flight phases is presented. An approach to find sequentially a conflict-free

wind-optimal route in real time is presented in [11]. In [21] and [18], a methodology

to reduce air traffic congestion without using the flow network was presented. It uses

bi-allocation (route-slot allocation) techniques; an optimal route and departure time for

each flight were computed using genetic algorithms. For more details, a comparison of

different optimization methods used for traffic flow management is provided in [14].

This paper is organized as follows: The problem statement, optimization formula-

tion and the size of the optimization formulation are presented in Section 1. A potential

conflict detection approach and two optimization approaches used to address the poten-

tial conflict reduction problem are is presents in Section 2. Finally, numerical results, and

conclusions are presented in Section 3 and 4 respectively.

1. Problem Statement

In this section, we first present a potential conflict minimization method based on route-

slot allocation techniques. Then, a mathematical formulation of the potential conflict

minimization under the form of combinatorial optimization is introduced. Finally, com-

plexity and size of the formulation of this particular discrete optimization problem is

discussed.

In the framework of the above-described new ATM concept, a 4D trajectory is a se-

quence of 4D coordinates (x,y,z, t) that aircraft has to follow through the airspace. Air-

craft are considered to be in potential conflicts when the minimum required separation

distance between them (5 Nautical miles (Nm) horizontally and 1,000 feet (ft) vertically)

is not ensured. This does not necessary leads to a collision, however, it is a situation

where a risk of collision is elevated.



In this work, we propose a methodology to minimize the number of potential con-

flicts by strategically organizing aircraft trajectories. The proposed method separates air-

craft trajectories in Cartesian space by modifying the shape of the nominal (initially

planned) trajectories (re-routing), and separates the trajectories in the temporal space by

shifting departure times.

1.1. Alternative Trajectory and Departure Time

The airspace is considered here as a Euclidean space. Latitudes and longitudes on the

ellipsoid earth surface are transformed into (x,y) coordinates by a lambert azimuthal

equal-area projection with the center of projection located at the center of the airspace.

The altitude in feet will be our z coordinate. Consider 4D trajectory given as a time

sequence of discretized 4D coordinates (x,y,z, t). A horizontal and vertical flight profile

are illustrated in Figure1 and 2 respectively.
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Figure 1. Horizontal Flight Profile.
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Figure 2. Vertical Flight Profile. (TOC= top of climb, TOD = top of descent)

Alternative Trajectory Design An alternative trajectory is constructed by placing

M virtual waypoints along the nominal trajectory and then reconnect each waypoint with

a straight line segment. The optimum cruise level, and both climb and descend altitude

profiles are computed by the Flight Management System (FMS) in order to minimize

fuel consumption or traveling time (according to cost index) based on the given aircraft

performance and on the predicted wind conditions. Therefore, in this study, the virtual

waypoints modifying the shape of flight path will be placed in the horizontal plane (while

respecting its initial optimum altitude profile).

Consider a trajectory profile in the horizontal plane. We call longitudinal axis the

axis that is tangent to the nominal trajectory, and the lateral axis is the axis that is perpen-



dicular to the longitudinal axis. For each flight, the position of each waypoint will be de-

fined using these relative reference axes. Let wi = {w
j
i |w

j
i = (w j

i,x,w
j
i,y)} for j = 1, . . . ,M

be a set of virtual waypoints used to modify the trajectory shape of flight i, where M is

the number of virtual waypoints on wishes to place, and w
j
i,x and w

j
i,y are the longitudinal

and lateral component of w
j
i respectively. In Figure 1, a dashed line illustrates a hori-

zontal flight profile of an alternative trajectory constructed with two virtual waypoints

(M=2). The altitude profile is then prolonged at the top of descent while respecting the

optimal climb and descent profile, as illustrated in Figure 2.

Alternative Departure Time In the strategic planning phase, the departure time of

each flight can be shifted by a positive (delay) or a negative (advance) time shift. Let ti,0
be the nominal (initially planned) departure time of aircraft i, and let δi ∈ ∆i be a depar-

ture time shift attributed to flight i, where ∆i is an interval of the form [δi,min,δi,max] of

feasible time shift of flight i, δi,min and δi,max are user-defined parameters. The alternative

departure time of aircraft i is therefore ti = ti,0 +δi.

1.2. Optimization Formulation

Consider a given set of N discretized 4D trajectories linking origin-destination (OD)

pairs in a given airspace.

Decision Variables: Let w = {w
j
i } for i = 1, . . . ,N; j = 1, . . . ,M be a set virtual

waypoint associated to trajectory i ,where M is the number of waypoints (a parameter to

be set by the user). Let δ = {δi} or i = 1, . . . ,N be a departure time shift associated to

trajectory i. Thus, the decision variable can be represented by (w,δ ).
Objective: The objective of the strategic potential conflict reduction problem is to

minimize overall potential conflicts between trajectories by allocating optimal route and

departure slots to each aircraft. Let Φi be the number of potential conflict encountered

by aircraft i. The cost function to be minimized is
N

∑
i=1

Φi(w,δ ).

Constraints:

To avoid sharp turns, the longitudinal position of the virtual waypoints should not

be too close to each other. In this work, for each flight i, the longitudinal location is

set to w
j
i,x =

j
M+1

Li,0, where Li,0 is the nominal route length of flight i (uniformly dis-

tributed longitudinal locations along the nominal route). Increased route length from

the ith aircraft nominal trajectory can be controlled by optimization through the lateral

locations (w
j
i,y). This lateral deviation is limited so that the maximum increased-route-

length remains within a given fraction, l, of the nominal distance: Li ≤ (1+ l)Li,0, where

0 ≤ l ≤ 1 is a parameter set by the user. This constraint limits the maximum allowable

lateral deviation of aircraft i, denoted by ai, which sets upper and lower bounds for w
j
i,y :

w
j
i,y ∈ [−ai,ai].

In this study, we chose to discretize uniformly the range [−ai,ai] of possible values

that can take the decision variable w
j
i,y into K possible values (where K is another pa-

rameter set by the user). Empirical tests showed that M = 2 and K = 7 leads to a suffi-

ciently rich search space. This discretization creates 72 = 49 possible route choices for

each flight as illustrated in Figure 3.

Common practice in airports conducted us to rely also on a discretization of the

interval of possible values for each of the departure time shifts δi ∈∆i. Let δi,min and δi,max



be the minimum and maximum departure time shift of flight i respectively. The departure

time shift can be chosen from a uniformly discretized continuous interval [δi,min,δi,max].
Empirical tests showed that setting −δi,min, δi,max = 60 minutes, and discretizing the time

intervals to every time step, d, of one minute yields a sufficiently rich search space. In

other words, we consider ∆i = {−60,−59,−58, . . . ,0, . . . ,58,59,60}.
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Figure 3. All KM possible route choices for an alternative trajectory (here K = 7, M = 2 and the nominal

trajectory is the segment OD)

With the specific parameter values we chose above, namely: K=7, M=2, w
j
i,x =

j
M+1

Li,0, the potential conflict reduction problem for this particular discrete version of the

route-departure slot allocation problem can be represented in a form of an optimization

problem as follows;

min
(wy,δ )

N

∑
i=1

Φi(wi,δi)

subject to

w
j
i,y ∈ {−ai,−

2ai

3
,−

ai

3
,0,

ai

3
,

2ai

3
,ai} i = 1, . . . ,N; j = 1, . . . ,M;

δi ∈ {−60,−59,−58, . . . ,0, . . . ,58,59,60} i = 1, . . . ,N;

Li(wi,y)≤ (1+d)Li,0

where

Φi is the number of potential conflicts in which aircraft i is involved;

δi is the departure time shift of a i;

w
j
i,y is the y coordinate of the jth virtual waypoint of trajectory i;

wy = {w
j
i,y} is a vector of lateral component of w;

Li is the length of trajectory i;

Li,0 is the initial length of trajectory i;

N is the total number of flights;

and M is the number of virtual waypoints used for each trajectory.

1.3. Complexity of the Problem

The mathematical model presented in the previous subsection involves manipulating dis-

crete variables which introduce high combinatories to the state space. The number of

possible solution, (Si), for a flight i is:



Si = |Swi
|.|Sδi

|

where |S| represent the cardinality of a set S.

Therefore, the total number of possible solution, denoted |State|, is:

|State|=
i=N

∏
i=1

Si

where N is the total number of flights. In this paper, each flight involves the same number

of possible trajectories. Therefore the cardinal of the feasible domain is:

|State|= (Swi
.Sδi

)N

In our case, K = 7, M = 2, −δi,min = δi,max = 60 minute, d = 1 minute, we have Swi
=KM =

49 and Sδi
= (60+ 60+ 1)/d = 121. If, for instance, N = 10,000, the cardinal of the

feasible space becomes |State|= (49.121)10,000.

Noticed that the solution space is not continuous and the dimension of this discrete

optimization problem grows exponentially with the size, N, of the problem. Moreover,

the decision variables are not independent due to the influences of interaction between

flights (the problem is not separable). The mono-objective function may have several

equivalent optima (multimodal). The combinatorial optimization problem is NP-hard,

which can be addressed by stochastic optimization approaches such as genetic algorithm,

simulated annealing, ant colony algorithm, etc. Due to the computational cost of evalu-

ating the objective function, ∑
N
i=1 Φi(w,δ ), the implementation of the potential conflict

reduction method in this work relies on non-population-based algorithms which will be

discussed in detail in the following section.

2. The Strategic Potential-Conflict Reduction Method

To implement the potential conflict reduction methodology on real air traffic data, a

method to evaluate the objective function and optimization algorithms adapted to the air

traffic assignment problem is presented and discussed in this section.

2.1. Potential Conflict Detection Scheme

In order to evaluate the optimization problem cost function, a methodology to detect a

potential conflict is developed and discussed in this section. As mention earlier, aircraft

are considered to be in potential conflict when their horizontal separation is less than 5

Nm and their vertical separation is less than 1,000 ft. One can imagine that an aircraft

has a protection zone defined by a three-dimensional cylinder, as illustrated in Figure4,

in which no other aircrafts are allowed to enter.

To detect the potential conflict in large-scale problem, a grid-based conflict detection

scheme is introduced in this study. First, the airspace is discretized using a 4D space-time

grid as illustrated in Figure 5. The size of each cell in the grid is defined by the separa-

tion norm (5 Nm horizontally and 1,000 ft vertically). Then, the aircraft position along

its discretized trajectory is associated to a corresponding cell in the 4D grid. Finally, po-
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Figure 4. The separation-norm cylinder
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Figure 5. Four dimension space - time grid

tential conflicts can be detected by checking the 33 = 27 neighboring cells of each non-

empty cell in the grid. A potential conflict is identified if either a cell is co-occupied by

different aircrafts or one of its neighbors is occupied by another aircraft.

The potential conflict detection scheme is implemented using hash table data struc-

ture. For a given discretized 4D trajectory, each sampled point is mapped to a cell in

the 4D grid, where a list of flight identifications occupying the corresponding grid are

stored. This data structure does not required to store the 4D coordinate, reducing thereby

the memory space required in the computation. Moreover, it allows to update easily the

total number of potential conflicts when route or departure slot choices of some flights

are modified.

2.2. Simulated Annealing Algorithm

Simulated Annealing (SA) is a so-called metaheuristic optimization method that was

introduced independently by S. Kirkpatrick et al. in 1983 and V. Cerny in 1985 [10]. Its

popularity comes from its ability to avoid being trapped in a local minima, to find near-

global optimal solutions for NP-hard combinatorial optimization problems, and the fact

that it is easily implemented for costly black-box optimization problem.

The simulated annealing method is inspired by the annealing process in metallurgy

where the state of a material can be modified by controlling the cooling temperature.

The annealing process consists in heating up a material to bring it to a high energy state.

Then, it is slowly cooled down by decreasing the temperature according to a properly

pre-defined cooling schedule. By keeping at each temperature step a sufficient duration,

the material reaches its thermal equilibrium before further reduction of temperature. As

the temperature tends towards zero, the material reaches a crystallized solid state where

the energy is at the absolute minimum. In contrast, if the temperature is decreased too

rapidly, it yields states at locally-optimal energy levels.

When solving an optimization problem using the simulated annealing method, the

cost function to be minimized is analogical to the energy of the physical problem, and

the control parameters controlling the exploration of the solution space plays the role of

the temperature. At each temperature step, the algorithm iterates until a fixed or dynamic

number of transitions are reached, until some stopping criteria is satisfied, for instance
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Figure 6. Standard simulated annealing algorithm

when a pre-defined (user-defined) maximum number of rejected movements is attained.

A conventional simulated annealing method can be summarized as shown in Figure 6,

where E denotes the energy function to be minimized, k is a pre-defined maximal number

of steps to be performed, and α is a pre-defined reduction factor (0 < α < 1).

2.3. A Hybrid Metaheuristics Method

Although the simulated annealing algorithm is generally able to find a good solution, in

this case, it requires to perform a large number of objective function evaluations which

leads to prohibitive computation time. In fact, at high temperatures, most of the computa-

tion time is spent on exploring the state space (accepting degraded solution), and on eval-

uating solutions which will not be accepted at lower temperatures. In order to improve

the efficiency of this optimization method, a method to balance between exploration (di-

versification) and exploitation (intensification) of the solution space is now introduced.

As the problem may have several equivalent optima (multimodal objective function), the

idea is to switch to a local search method around the current solution, while allowing to

accept degraded solutions when necessary in order to escape from a local trap.

We propose to integrate a local heuristic search method within the simulated anneal-

ing to exploit the solution space around a current solution in order to accelerate conver-

gence. Obviously, a balance must be found, as relying too often to local search yield pre-

mature termination of the simulated annealing at a local optimum. Therefore, an adaptive

probability to resort to local heuristic search is introduced. This probability should be

low at high temperature in order to preserve diversity of the search. At low temperature,

when simulated annealing becomes less effective, this probability becomes higher in or-

der to emphasis on intensification of the search around the best solutions found so far. In

this work, the probability of performing the local search is controlled as follows;

Pl(T ) = Pl,init +(Pl,max −Pl,init) ·
T0 −T

T0

where Pl is a parameter that controls the probability to have recourse to the local search;

Pl,init is the initial value of this probability;



Pl,max is the maximum probability value;

T0 and T is the initial and current temperature respectively.

The hybrid metaheuristics method used in the paper is summarized in Figure 7.
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Figure 7. Hybrid metaheuristics algorithm

Local search methods. There exists several local search strategies whose efficiency

depends largely on various features of the problem such as the landscape of the objective

function, which is difficult to be determined in such a high-dimension problem. How-

ever, empirical experience (after performing the simulated annealing for several times),

shows that the objective function is multi-modal with several optimal solution yielding

the same value. Therefore, firstly in this study, it is proposed to use a hill-climbing-

type (or, rather descending here as one minimizes) search strategy which is summa-

rized in Figure 8. From a randomly chosen trajectory i with a current state (wy,δ ) and

current objective function value ∑
N
i=0 Φi(wy,δ ), this local search algorithm generates

a neighbor solution, denoted (wyn ,δn), according to a pre-defined neighborhood rela-

tion. If the neighbor solution value, ∑
N
i=0 Φi(wyn ,δn), is better than the current solution

(

∑
N
i=0 Φi(wyn ,δn)≤ ∑

N
i=0 Φi(wy,δ )

)

, the local search algorithm accepts the neighbor so-

lution as a current solution. Otherwise, the algorithm rejects the neighbor solution. Then,

a new neighbor solution is generated, and the local search process repeats until a (user-

defined) termination criterion are satisfied.
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Figure 8. Greedy-type search method



Neighborhood relation. For a given state of trajectory, (wi,y,δi), first the local

search algorithm exploits the solution space by focusing on searching a better route and

departure time options for a given aircraft i. Then, the algorithm tries to improve the so-

lution by modifying routes and departure slot choices of every other aircraft which can

be potentially interacting with aircraft i. The list of aircrafts which can be interacting

with aircraft i is computed in a pre-processing phase and stored in a database.

Data processing. A list of aircraft potentially interacting with any given aircraft is

computed off line in a pre-processing phase. Let us defined the 4D envelope of an aircraft

as the subset of [R]4 containing all possible 4D trajectories for that aircraft when consid-

ering every feasible departure time and every possible position of the M waypoints. Two

flights are considered to be potentially interacting with each other if their 4D envelopes

intersect.

In practice, this is implemented as follows. For each aircraft, we first construct an

envelope of all possible trajectories in horizontal plane as illustrated by the 2D convex

hull in Figure 9. Next, these convex hulls are probed pairwise. If an intersection between

any pair of 2D convex hull is detected, this intersection area is simplified as a (smaller)

rectangular zone in each convex hull illustrated as a shaded area in Figure 9.
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Figure 9. Intersection of 2D convex hulls of two trajectories

After that, the earliest possible time (tin,imin
) each aircraft enters the simplified in-

tersection zone and the latest possible time (tout,imax) each aircraft leaves the zone are

computed. If the time interval [tin,imin
, tout,imax ]∩ [tin,imin

, tout,imax ] 6= ø, the altitude ranges

[zmin,zmax] of both aircraft in the simplified intersection zone are computed. Finally, if the

altitude ranges of both aircrafts overlap, both aircrafts are considered to be potentially

interacting with each other.

3. Numerical Results

In this section, the proposed methodology is tested on a full day of air traffic over the

French airspace obtained from CATS air traffic simulator. The reference en-route air traf-

fic on12 August 2008, consists of 8,266 trajectories, are discretized with sampling time

of 15 seconds. The initial number of potential conflicts between aircrafts is 174,722 po-

tential conflicts. The initial air traffic situation is illustrated in Figure 10. The maximum

departure time shift is set to 60 minutes, and the maximum route length extension is set

to 20% (l = 0.2) of the nominal route length. The maximum allowed lateral deviation ai

is deduced from:

√

2
(

Li
3

2
+a2

i

)2

+
(

Li
3

2
+(2ai)2

)2

= (1+ l)Li,0.



Figure 10. Initial air traffic situation over the French airspace

The first part of the implementation of the route-departure slot allocation algorithms

introduced in the previous section consists in determining the (user-defined) control pa-

rameters of the optimization algorithms. Empirical tests conduct us to set these parame-

ters as follows:

• The initial temperature, (T0), is calculated as a preliminary steps using an algo-

rithm proposed in [10]. First, 100 disturbances are generated randomly. Second,

the average change of energy (∆E) is evaluated. Then the initial temperature (T0)

is deduced from the relation: e
−∆E

T0 = τ0, where τ0 is the initial rate of acceptance

of degrading solutions. Empirical tests leads us to set τ0 = 40%.

• In the cooling process, the temperature should be reduced slowly and smoothly.

Lowering abruptly the temperature yields premature convergence towards a local

minima that is not interesting. A widely-used cooling schedule is the geometrical

law: Ti+1 = α · Ti evoked in Figure 6. Empirical tests conducts us to decrease

the temperature after 4,000 iterations is performed at each temperature step with

α = 0.99.

• The algorithm is terminated when an optimal solution (routes and departure slots

choice with zero potential conflict) is reached or when the final temperature Tf

satisfied Tf =
Tinit
1000

.

• For the hybrid-metaheuristic method, empirical tests lead us to set Pl,init = 0.001,

Pl,max = 0.1 which yields the probability of performing the local search: Pl(T ) =

0.001+0.1 · T0−T
T0

. In other words, the local search is performed with a probability

of 0.1% up to about 10%.

The proposed potential conflict reduction method is implemented in Java on a

Core2Duo 2.4 GHz computer with 8 GB DDR3 RAM on a Unix platform. We were

able to obtain optimal solutions (conflict-free) from both optimization methods within

reasonable computations time for a strategic planning. Numerical results obtained are

presented in Table 1 .

The method based on a standard simulated annealing yields an optimal solution for

every trajectory with computation time ≈ 561 minutes after performing 13,760,000 tran-

sitions. Figure 11 shows the value of the best solution found at each temperature step

(yBest) and the value of the solution at the end of each temperature step (yCurrent) using

standard simulated annealing. Since simulated annealing accepts more degraded solu-

tion at high temperatures, it can be noticed that the difference between the best solution



Optimization avg. computation number of avg. extra avg. departure

method time objective-function distance time shift

(minutes) evaluations (km) (minutes)

standard SA 561.37 13,760,000 22.83 21.6

hybrid-metaheuristic method 360.48 6,797,549 20.46 23.2

Table 1. Numerical results

and current solution is greater at high temperatures. These differences decrease as the

algorithm slowly and smoothly converge to the optimal solution.
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Figure 11. Evolution of objective function value

of algorithm based on simulated annealing
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Figure 12. Evolution of objective function value

of algorithm based on hybrid metaheuristics

The integration of the greedy-like local search method into simulated annealing sig-

nificantly reduces the computation time and accelerates convergence. This hybrid method

is able to reach an optimal solution within ≈ 360 minutes after performing 6,797,549

objective function evaluations, ≈ 50% less than using standard simulated annealing. As

shown in Figure 12 the hybrid algorithms converge much faster.

An example of potential conflict free flight plan is illustrated in Figure 13. It can be

noticed that the trajectories are less concentrated than the initial traffic scenario.

Figure 13. An example of conflict-free trajectory plan obtained by solving the potential conflict reduction

problem



4. Conclusions

In this paper, we introduced a methodology to address strategic 4D trajectory planning.

The proposed methodology minimizes the number of potential conflicts by modifying

the shape of aircraft trajectories and by shifting their departure times. First, the potential

conflict minimization problem is formulated under the form of a combinatorial optimiza-

tion problem. Complexity and size of the formulation was discussed. This NP-hard prob-

lem is then addressed with two stochastic optimization algorithms that we have devel-

oped. Numerical results are presented on a full day of air traffic over the French airspace

involving 174,722 potential conflicts. The first optimization method based on a standard

simulated annealing yields encouraging results a conflict-free trajectory is found for ev-

ery aircraft in a computational time which is viable for an operational context. A local

search method is integrated into simulated annealing to accelerate convergence to opti-

mal solution by a factor of 2.

In order to address larger (continent scale) instances, we plan to improve further the

proposed air-traffic assignment (route-slot allocation) algorithm, by relaxing the discrete

virtual-waypoint location constraint and by assessing more efficient design of the hybrid-

metaheuristic algorithm. Furthermore, uncertainties of aircraft positions will be taken

into account in the trajectory planning process.
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