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Stationary Point Process, Palm measure
and collision risk

Ludovic D’ESTAMPES a,1 and Pascal LEZAUD a

a ENAC-MAIAA, Toulouse, FRANCE

Abstract. The classical probability of collision between an aircraft whose the path
crosses a flow of aircraft is derived under the assumption that it is described by a
Poisson process. Using the so-called Palm measure, we extend the classical result
to a stationary point process.
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Introduction

Traditionally, when studying the simplest model of horizontal collision problem for two
intersecting air-routes, the hypothesis of a Poisson stationary process is made. We show
in this paper that the Poisson hypothesis is not necessary, at least at a first approximation.
For that, we use the Palm measure of the stationary process. In the second Section, we
recall the main notions about stationary point process, this allows us to introduce in the
third Section the Palm measure. This part follows closely [1]. Finally in the last Section,
we apply the previous results in the context of collision risk.

1. Point process

In many applications, we observe some discrete events occurring at times T0, T1,. . . ,Tn;
more formally these observations can be encompassed in the sequence (Tn,n∈Z), where
the Tn ≤ Tn+1 are random variables. We call this process a point process on R+, and
we say that the point process is simple if Tn < Tn+1 for each n. Another point of view
consists in counting the number N((a,b]) of events observed during the time interval
(a,b]; then N((a,b]) = ∑n∈Z 1(a,b](Tn) and Tn = inf{t : N(−∞, t]) = n}. We say that the
point process is stationary if the joint probability of the number of events in m disjoint
intervals I1, · · · , Im is invariant by translation, i.e. for all m ∈ N and all t ∈ R

P(N(I1) = k1, · · · ,N(Im) = km) = P(N(I1 + t) = k1, · · · ,N(Im + t) = km).

Let introduce for each t, the shift mapping θt defined on the probability space by
N(θtω, I) = N(ω, I + t). Therefore, the point process should be stationary if and only if
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P ◦ θt = P. These mappings satisfy the following properties: θt ◦ θs = θt+s, θ
−1
t = θ−t

and for each Tn ≤ t < Tn+1, θtTn = T0 and θTn+1 = T1 with the convention that T0 ≤ 0 (see
Figure 1).
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Figure 1. The shift. Note the numbering of the points Ti

In the following, we will consider only stationary point processes. The positive num-
ber λ = E(N((0,1])) is called the intensity of the point process; this number can be in-
finite, so we assume now that λ > 0 and is finite. Since the stationarity, for all interval
I, the measure λ (I) := E(N(I)) is invariant by translation, so it is proportional to the
Lebesgue measure l on R and we deduce that λ (I) = λ · l(I), with a constant λ > 0.

2. Palm measure

An important area in which point processes are used is queueing theory. For example,
the number of clients at a bank counter is a point process and the study of the counting
process N is useful to decide to open another counter or not. Nevertheless, the point of
view of the client is different, since the more pertinent for him is the waiting time at the
instant he arrives in the queue or more generally all informations related to the counting
process given its arrival time.

This suggests us to introduce a new probability P0
N , called Palm measure, defined

only on the event T0 = 0, i.e. P0
N(T0 = 0) = 1. Due to the stationarity of the point process,

the random variables Sn = Tn+1−Tn are identically distributed. Therefore, on the event
{T0 = 0}, we could define the empirical function F0(t) of T1 = S0 and we will have
F0(t) = P0

N(Sn ≤ t) for all n. Thus, the Palm measure need to be a measure P0
N such that

P0
N(A) = 0 for all measurable sets A such A∩{T0 = 0} = /0. For that, we need to count

the number of events in A, not by observing all the process but by shifting successively
all the Tn at the origin of the time (that means the client moves to each Tn), and so we
consider the sum ∑n∈Z 1A ◦θTn . Nevertheless, the Palm measure being a probability we
have to normalize the sum, from which the probability

P0
N(A) =

1
λ l(C)

E [(1A ◦θTn)1C(Tn)] :=
1

λ l(C)
E
[∫

C
(1A ◦θs)N(ds)

]
,

where C is any measurable subset of R. Nevertheless, it can be proved that this probabil-
ity is independent of C and is supported by the event {T0 = 0}, so we adopt the following
definition



P0
N(A) =

1
λ
E
[
(1A ◦θTn)1(0,1](Tn)

]
.

Knowing the Palm probability, it is also possible to obtain the law of the Point pro-
cess by the following relation (Inversion Formula of Ryll-Nardzewski and Slivnyak)

P(A) = λ

∫
∞

0
P0

N(T1 > t,θt ∈ A)dt. (1)

Let us come back to the empirical function F0(t) of the Sn under the probability P0
N ,

i.e.

F0(t) = P0
N(Sn ≤ t)

and introduce the residual waiting time at time t ≥ 0 defined by

W (t) = TN(t)+1− t

and the spent waiting time at time t

A(t) = t−TN(t).

For a stationary point process, you can take t = 0, in that case W (0) = T1 and A(0) =
−T0. Using (1) we get for A = {T1 > v,−T0 > u} with u,v≥ 0,

P(T1 > v,−T0 > u) = λ

∫
∞

v+u
(1−F0(s))ds,

from which we derive

P(T1 > v) = λ

∫
∞

v
(1−F0(s))ds, P(−T0 > u) = λ

∫
∞

u
(1−F0(s))ds.

We conclude that −T0 and T1 are identically distributed for the probability P. Moreover,
for any t ∈ [0,T1], we have S0(θt) = S0, from which we can derive the following identity
available for any function f :

E[ f (S0)] = λE0
N [S0 f (S0)].

We then obtain directly the law of S0 under P:

P(S0 ≤ x) =
∫
[0,x]

λyF0(dy),

which is in general different from F0(x). For instance,

E(S0) =
∫

∞

0
λy2F0(dy) = E0

N(S0)

(
1+

Var0
N(S0)

(E0
N(S0))2

)
,

since E0
N(S0) = 1/λ , so E(S0) = E0

N(S0) iff under the Palm probability, the variance of
S0 is zero, therefore iff S0 is a constant and thus also all the Sn.



3. Application to the collision risk

We consider two aircraft A1 and A2, each flying on straight-line paths at constant velocity
v1 and v2 respectively. If the aircraft A1 is considered fixed, the aircraft A2 can be con-
sidered having a velocity vr = v2− v1 relative to the aircraft A1 and a relative position
r(t) at time t given by, r(t) = r(0)+vrt.

A conflict is declared when the predicted position of the two aircraft are such that
both horizontal and vertical separation parameters are infringed. Therefore, we associate
a conflict volume to the aircraft A1 which is an airspace formed around aircraft A1 into
which, if aircraft A2 enters, a conflict is signalled. When this volume is a sphere a radius
R, a conflict occurs when the predictive distance at the Closest Point of Approach (CPA)
is smaller than or equal to R. The CPA is determined by the condition d

dt (r(t) · r(t)) = 0
or

r(t) ·vr = 0,

that means the relative distance r is orthogonal to the relative velocity vr. The time tCPA
of the CPA and the distance dCPA at CPA are given respectively by

tCPA =−r(0) ·vr

vr ·vr
, d2

CPA = r(0) · r(0)− (r(0) ·vr)
2

vr ·vr
.

Let θr ∈ [0,2π[ be the angle between vr and r(0), i.e. r(0) ·vr = r(0)vr cosθr, with
r(0) = ‖r(0)‖ and vr = ‖vr‖. If θr = 0 then the aircraft A2 is passing from the aircraft
A1 and this situation is not relevant, so by now we assume that θr 6= 0. Introducing the
distance a = R/(|sinθr|), a conflict will occur if r(0)≤ a.

We consider now an aircraft A2 whose the straight-line path crosses a flow of aircraft
each of which are flying on straight-line path too. Moreover, we assume that aircraft A1
of the flow are distributed according to a stationary point process with intensity λ . Let
choose the time zero as the moment the aircraft A2 crosses the flow and let T0 and T1
the time separations between the two closest aircraft A1 of the flow to the aircraft A2.
That means, at time t = 0, an aircraft A1 will arrive at the crossing point at time −T0
and the other crossed this same point T1 time units ago. If F0 is the distributed function
of T1 under the Palm measure of the point process, the probability Pc to have a conflict
between the aircraft A2 and one of aircraft A1 is given by

Pc = 1−P(−T0 > a/v1,T1 > a/v1)= 1−λ

∫
∞

2a/v1

(1−F0(u))du= λ

∫ 2a/v1

0
(1−F0(u))du,

since
∫

∞

0 (1−F0(u))du = E0
N(T1) = 1/λ .

The quantity 2a/v1 being very small, we obtain the first order approximation Pc ≈
(2λa)/v1 and if in addition, F0 has a density f0, we obtain a second order approximation

Pc ≈
2λa
v1

(
1− a

v1
f0(0)

)
.



3.1. Poisson Process

The Poisson process corresponds to the case F0(t) = 1− e−λ t ; so

Pc = 1− e−2λa/v1 ≈ 2λa
v1

(
1− λa

v1

)
.

As vr sinθr = v2 sinθ with θ the crossing angle between the two trajectories, we obtain
the well-known formula

Pc ≈
2λa
v1

.

3.2. Gamma Law

Now, we assume that F0 is a Gamma Law with parameters p > 0 and θ > 0 whose the
density is given by

f0(u) =
θ p

Γ(p)
e−θuup−1 u≥ 0.

The expectation of this law being p/θ , we have to set λ = θ/p, therefore

Pc =
2λa
v1
−λ

∫ 2a/v1

0

∫ t

0

θ p

Γ(p)
e−θuup−1dudt

=
2λa
v1
−λ

∫ 2a/v1

0

θ p

Γ(p)
e−θuup−1

∫ 2a/v1

u
dtdu

=
2λa
v1

[
1−
(

2aθ

v1

)p 1
Γ(p)

∫ 1

0
(1− v)vp−1e−

2aθ
v1

vdv
]

=
2λa
v1

[
1−
(

2aθ

v1

)p ∞

∑
n=0

(−1)n
(

θ2a
v1

)n B(p+n,2)
n!Γ(p)

]

=
2λa
v1

[
1−

∞

∑
n=0

(−1)n
(

2θa
v1

)n+p B(p+n,2)
n!Γ(p)

]
.

where B(x,y) =
∫ 1

0 (1− v)y−1vx−1dv = Γ(x)Γ(y)
Γ(x+y) . Thus the second order approximation is

given by

Pc ≈
2λa
v1

[
1−
(

2λap
v1

)p 1
Γ(p+2)

]
.

3.3. Regular events with random translatories

Here, we consider events which are regularly spaced out but with a possibly random
translatory. So, the i-th event occurs at time



ti = a0 + ic+bi, i = . . . ,−1,0,1, . . . ,

where c is spacing between the events in absence of random perturbations and the bi are
independent and identically distributed random variables whose the common empirical
function, under the Palm measure, will be denoted by FB. Then the i-th event is planned
at time a0 + ic, but its real time is moved by bi. This type of process has been studied by
T. Lewis and Govier [2,3] about the arrivals of tankers at a terminal.

We choose the event with indice i = 0 as initial time; this event being planned at
time −b0 with regard to the origin of time (a0 + b0 = 0), we deduce that, given b0, the
i-th event occurs at time ic+bi−b0, so

P0
N(ti ≤ t|b0) = FB(t +b0− ic)−FB(b0− ic).

It is important to note that the times ti are not the times Ti of the point process induced by
the events considered, since the j-th event can occur before the i-th event, even if i < j.

To obtain F0(t), it is enough to observe that P0
N(T1 > t) =P0

N(N(0, t] = 0), that means
no event, except the 0-th event, has occurred during the time interval (0, t]. Thus

P0
N(T1 > t|b0) =

∞

∏
′

i=−∞

[1− (FB(t +b0− ic)−FB(b0− ic))] ,

1−F0(t) =
∫

∞

−∞

∞

∏
′

i=−∞

[1− (FB(t +b0− ic)−FB(b0− ic))]FB(db0),

where ∏
′∞
i=−∞

denotes the product over all the indices i except i = 0.
Let assume now, that FB has a density fB with a finite value in zero. Then, for t small

enough we get the following approximation

F0(t)≈ 1−
∫

∞

−∞

∞

∏
′

i=−∞

[1− t fB(b0− ic)] fB(b0)db0

≈ 1−
∫

∞

−∞

[
1− t

∞

∑
′

i=−∞

fB(b0− i)

]
fB(b0)db0

= t
∞

∑
i=−∞

∫
∞

−∞

fB(b0− i) fB(b0)db0− t
∫

∞

−∞

f 2
B(b0)db0

= t
∞

∑
i=−∞

fZ(−ic)− t fZ(0),

where fZ is the density of a random variable Z with same law that the difference of two
random variables i.i.d. with density fB.

The sum c∑ fZ(t − ic) has been investigated as an approximation for the integral∫
∞

−∞
fZ(u)du by [5,4]; the difference is extremely small for all t, especially when fZ(x)

is a normal p.d.f. We deduce the following new approximation



F0(t)≈ t
[

c−1
∫

∞

−∞

fZ(u)du− fZ(0)
]
= t
(

1
c
− fZ(0)

)
.

Therefore, the probability Pc can be approximated by

Pc ≈ λ

∫ 2a/v1

0

[
1−u(c−1− fZ(0))

]
du =

2λa
v1

[
1− a

v1

(
1
c
− fZ(0)

)]
.

For instance, if the B is distributed as a centred Gaussian variable with variance σ2
b , then

fZ(x) =
1

2σbπ1/2 exp
(
− x2

4σ2
b

)
,

and

Pc ≈
2λa
v1

[
1− a

v1

(
1
c
− 1

2σbπ1/2

)]
.

It remains to estimate the parameter λ , nevertheless, the process being stationary the
mean number of events, during a period of t unit of time, is t/c, so λ is approximatively
equal to 1/c.
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