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Stationary Point Process, Palm measure and collision risk
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The classical probability of collision between an aircraft whose the path crosses a flow of aircraft is derived under the assumption that it is described by a Poisson process. Using the so-called Palm measure, we extend the classical result to a stationary point process.

Introduction

Traditionally, when studying the simplest model of horizontal collision problem for two intersecting air-routes, the hypothesis of a Poisson stationary process is made. We show in this paper that the Poisson hypothesis is not necessary, at least at a first approximation. For that, we use the Palm measure of the stationary process. In the second Section, we recall the main notions about stationary point process, this allows us to introduce in the third Section the Palm measure. This part follows closely [START_REF] Baccelli | Elements of Queueing Theory[END_REF]. Finally in the last Section, we apply the previous results in the context of collision risk.

Point process

In many applications, we observe some discrete events occurring at times T 0 , T 1 ,. . . , T n ; more formally these observations can be encompassed in the sequence (T n , n ∈ Z), where the T n ≤ T n+1 are random variables. We call this process a point process on R + , and we say that the point process is simple if T n < T n+1 for each n. Another point of view consists in counting the number N((a, b]) of events observed during the time interval

(a, b]; then N((a, b]) = ∑ n∈Z 1 (a,b] (T n ) and T n = inf{t : N(-∞,t]) = n}.
We say that the point process is stationary if the joint probability of the number of events in m disjoint intervals I 1 , • • • , I m is invariant by translation, i.e. for all m ∈ N and all t ∈ R P

(N(I 1 ) = k 1 , • • • , N(I m ) = k m ) = P(N(I 1 + t) = k 1 , • • • , N(I m + t) = k m ).
Let introduce for each t, the shift mapping θ t defined on the probability space by N(θ t ω, I) = N(ω, I + t). Therefore, the point process should be stationary if and only if P • θ t = P. These mappings satisfy the following properties:

θ t • θ s = θ t+s , θ -1 t = θ -t
and for each T n ≤ t < T n+1 , θ t T n = T 0 and θ T n+1 = T 1 with the convention that T 0 ≤ 0 (see Figure 1). In the following, we will consider only stationary point processes. The positive number λ = E(N((0, 1])) is called the intensity of the point process; this number can be infinite, so we assume now that λ > 0 and is finite. Since the stationarity, for all interval I, the measure λ (I) := E(N(I)) is invariant by translation, so it is proportional to the Lebesgue measure l on R and we deduce that λ (I) = λ • l(I), with a constant λ > 0.
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Palm measure

An important area in which point processes are used is queueing theory. For example, the number of clients at a bank counter is a point process and the study of the counting process N is useful to decide to open another counter or not. Nevertheless, the point of view of the client is different, since the more pertinent for him is the waiting time at the instant he arrives in the queue or more generally all informations related to the counting process given its arrival time.

This suggests us to introduce a new probability P 0 N , called Palm measure, defined only on the event T 0 = 0, i.e. P 0 N (T 0 = 0) = 1. Due to the stationarity of the point process, the random variables S n = T n+1 -T n are identically distributed. Therefore, on the event {T 0 = 0}, we could define the empirical function F 0 (t) of T 1 = S 0 and we will have F 0 (t) = P 0 N (S n ≤ t) for all n. Thus, the Palm measure need to be a measure P 0 N such that P 0 N (A) = 0 for all measurable sets A such A ∩ {T 0 = 0} = / 0. For that, we need to count the number of events in A, not by observing all the process but by shifting successively all the T n at the origin of the time (that means the client moves to each T n ), and so we consider the sum ∑ n∈Z 1 A • θ T n . Nevertheless, the Palm measure being a probability we have to normalize the sum, from which the probability

P 0 N (A) = 1 λ l(C) E [(1 A • θ T n )1 C (T n )] := 1 λ l(C) E C (1 A • θ s )N(ds) ,
where C is any measurable subset of R. Nevertheless, it can be proved that this probability is independent of C and is supported by the event {T 0 = 0}, so we adopt the following definition

P 0 N (A) = 1 λ E (1 A • θ T n )1 (0,1] (T n ) .
Knowing the Palm probability, it is also possible to obtain the law of the Point process by the following relation (Inversion Formula of Ryll-Nardzewski and Slivnyak)

P(A) = λ ∞ 0 P 0 N (T 1 > t, θ t ∈ A)dt. (1) 
Let us come back to the empirical function F 0 (t) of the S n under the probability P 0 N , i.e.

F 0 (t) = P 0 N (S n ≤ t)
and introduce the residual waiting time at time t ≥ 0 defined by

W (t) = T N(t)+1 -t
and the spent waiting time at time t

A(t) = t -T N(t) .
For a stationary point process, you can take t = 0, in that case W (0) = T 1 and A(0) = -T 0 . Using (1) we get for

A = {T 1 > v, -T 0 > u} with u, v ≥ 0, P(T 1 > v, -T 0 > u) = λ ∞ v+u (1 -F 0 (s))ds,
from which we derive

P(T 1 > v) = λ ∞ v (1 -F 0 (s))ds, P(-T 0 > u) = λ ∞ u (1 -F 0 (s))ds.
We conclude that -T 0 and T 1 are identically distributed for the probability P. Moreover, for any t ∈ [0, T 1 ], we have S 0 (θ t ) = S 0 , from which we can derive the following identity available for any function f :

E[ f (S 0 )] = λ E 0 N [S 0 f (S 0 )].
We then obtain directly the law of S 0 under P:

P(S 0 ≤ x) = [0,x] λ yF 0 (dy),
which is in general different from F 0 (x). For instance,

E(S 0 ) = ∞ 0 λ y 2 F 0 (dy) = E 0 N (S 0 ) 1 + Var 0 N (S 0 ) (E 0 N (S 0 )) 2 , since E 0 N (S 0 ) = 1/λ , so E(S 0 ) = E 0 N (S 0
) iff under the Palm probability, the variance of S 0 is zero, therefore iff S 0 is a constant and thus also all the S n .

Application to the collision risk

We consider two aircraft A 1 and A 2 , each flying on straight-line paths at constant velocity v 1 and v 2 respectively. If the aircraft A 1 is considered fixed, the aircraft A 2 can be considered having a velocity v r = v 2 -v 1 relative to the aircraft A 1 and a relative position r(t) at time t given by, r(t) = r(0) + v r t.

A conflict is declared when the predicted position of the two aircraft are such that both horizontal and vertical separation parameters are infringed. Therefore, we associate a conflict volume to the aircraft A 1 which is an airspace formed around aircraft A 1 into which, if aircraft A 2 enters, a conflict is signalled. When this volume is a sphere a radius R, a conflict occurs when the predictive distance at the Closest Point of Approach (CPA) is smaller than or equal to R. The CPA is determined by the condition d dt (r(t) • r(t)) = 0 or r(t) • v r = 0, that means the relative distance r is orthogonal to the relative velocity v r . The time t CPA of the CPA and the distance d CPA at CPA are given respectively by

t CPA = - r(0) • v r v r • v r , d 2 CPA = r(0) • r(0) - (r(0) • v r ) 2 v r • v r .
Let θ r ∈ [0, 2π[ be the angle between v r and r(0), i.e. r(0) • v r = r(0)v r cos θ r , with r(0) = r(0) and v r = v r . If θ r = 0 then the aircraft A 2 is passing from the aircraft A 1 and this situation is not relevant, so by now we assume that θ r = 0. Introducing the distance a = R/(| sin θ r |), a conflict will occur if r(0) ≤ a.

We consider now an aircraft A 2 whose the straight-line path crosses a flow of aircraft each of which are flying on straight-line path too. Moreover, we assume that aircraft A 1 of the flow are distributed according to a stationary point process with intensity λ . Let choose the time zero as the moment the aircraft A 2 crosses the flow and let T 0 and T 1 the time separations between the two closest aircraft A 1 of the flow to the aircraft A 2 . That means, at time t = 0, an aircraft A 1 will arrive at the crossing point at time -T 0 and the other crossed this same point T 1 time units ago. If F 0 is the distributed function of T 1 under the Palm measure of the point process, the probability P c to have a conflict between the aircraft A 2 and one of aircraft A 1 is given by

P c = 1-P(-T 0 > a/v 1 , T 1 > a/v 1 ) = 1-λ ∞ 2a/v 1 (1-F 0 (u))du = λ 2a/v 1 0 (1-F 0 (u))du, since ∞ 0 (1 -F 0 (u))du = E 0 N (T 1 ) = 1/λ .
The quantity 2a/v 1 being very small, we obtain the first order approximation P c ≈ (2λ a)/v 1 and if in addition, F 0 has a density f 0 , we obtain a second order approximation

P c ≈ 2λ a v 1 1 - a v 1 f 0 (0) .

Poisson Process

The Poisson process corresponds to the case F 0 (t) = 1e -λt ; so

P c = 1 -e -2λ a/v 1 ≈ 2λ a v 1 1 - λ a v 1 .
As v r sin θ r = v 2 sin θ with θ the crossing angle between the two trajectories, we obtain the well-known formula

P c ≈ 2λ a v 1 .

Gamma Law

Now, we assume that F 0 is a Gamma Law with parameters p > 0 and θ > 0 whose the density is given by

f 0 (u) = θ p Γ(p) e -θ u u p-1 u ≥ 0.
The expectation of this law being p/θ , we have to set λ = θ /p, therefore

P c = 2λ a v 1 -λ 2a/v 1 0 t 0 θ p Γ(p) e -θ u u p-1 dudt = 2λ a v 1 -λ 2a/v 1 0 θ p Γ(p) e -θ u u p-1 2a/v 1 u dtdu = 2λ a v 1 1 - 2aθ v 1 p 1 Γ(p) 1 0 (1 -v)v p-1 e -2aθ v 1 v dv = 2λ a v 1 1 - 2aθ v 1 p ∞ ∑ n=0 (-1) n θ 2a v 1 n B(p + n, 2) n!Γ(p) = 2λ a v 1 1 - ∞ ∑ n=0 (-1) n 2θ a v 1 n+p B(p + n, 2) n!Γ(p) .
where B(x, y)

= 1 0 (1 -v) y-1 v x-1 dv = Γ(x)Γ(y) Γ(x+y)
. Thus the second order approximation is given by

P c ≈ 2λ a v 1 1 - 2λ ap v 1 p 1 Γ(p + 2) .

Regular events with random translatories

Here, we consider events which are regularly spaced out but with a possibly random translatory. So, the i-th event occurs at time

t i = a 0 + ic + b i , i = . . . , -1, 0, 1, . . . ,
where c is spacing between the events in absence of random perturbations and the b i are independent and identically distributed random variables whose the common empirical function, under the Palm measure, will be denoted by F B . Then the i-th event is planned at time a 0 + ic, but its real time is moved by b i . This type of process has been studied by T. Lewis and Govier [START_REF] Govier | Serially correlated arrivals in some queueing and inventory systems[END_REF][START_REF] Govier | Stock levels generated by controlled-variability arrival process[END_REF] about the arrivals of tankers at a terminal. We choose the event with indice i = 0 as initial time; this event being planned at time -b 0 with regard to the origin of time (a 0 + b 0 = 0), we deduce that, given b 0 , the i-th event occurs at time ic + b ib 0 , so

P 0 N (t i ≤ t|b 0 ) = F B (t + b 0 -ic) -F B (b 0 -ic).
It is important to note that the times t i are not the times T i of the point process induced by the events considered, since the j-th event can occur before the i-th event, even if i < j.

To obtain F 0 (t), it is enough to observe that P 0 N (T 1 > t) = P 0 N (N(0,t] = 0), that means no event, except the 0-th event, has occurred during the time interval (0,t]. Thus

P 0 N (T 1 > t|b 0 ) = ∞ ∏ i=-∞ [1 -(F B (t + b 0 -ic) -F B (b 0 -ic))] , 1 -F 0 (t) = ∞ -∞ ∞ ∏ i=-∞ [1 -(F B (t + b 0 -ic) -F B (b 0 -ic))] F B (db 0 ),
where ∏ ∞ i=-∞ denotes the product over all the indices i except i = 0. Let assume now, that F B has a density f B with a finite value in zero. Then, for t small enough we get the following approximation

F 0 (t) ≈ 1 - ∞ -∞ ∞ ∏ i=-∞ [1 -t f B (b 0 -ic)] f B (b 0 )db 0 ≈ 1 - ∞ -∞ 1 -t ∞ ∑ i=-∞ f B (b 0 -i) f B (b 0 )db 0 = t ∞ ∑ i=-∞ ∞ -∞ f B (b 0 -i) f B (b 0 )db 0 -t ∞ -∞ f 2 B (b 0 )db 0 = t ∞ ∑ i=-∞ f Z (-ic) -t f Z (0),
where f Z is the density of a random variable Z with same law that the difference of two random variables i.i.d. with density f B .

The sum c ∑ f Z (tic) has been investigated as an approximation for the integral ∞ -∞ f Z (u)du by [START_REF] Moran | Numerical integration by systematic sampling[END_REF][START_REF] Kendall | A summation formula associated with finite trigonometric integrals[END_REF]; the difference is extremely small for all t, especially when f Z (x) is a normal p.d.f. We deduce the following new approximation

F 0 (t) ≈ t c -1 ∞ -∞ f Z (u)du -f Z (0) = t 1 c -f Z (0) .
Therefore, the probability P c can be approximated by

P c ≈ λ 2a/v 1 0 1 -u(c -1 -f Z (0)) du = 2λ a v 1 1 - a v 1 1 c -f Z (0) .
For instance, if the B is distributed as a centred Gaussian variable with variance σ 2 b , then

f Z (x) = 1 2σ b π 1/2 exp - x 2 4σ 2 b , and 
P c ≈ 2λ a v 1 1 - a v 1 1 c - 1 2σ b π 1/2 .
It remains to estimate the parameter λ , nevertheless, the process being stationary the mean number of events, during a period of t unit of time, is t/c, so λ is approximatively equal to 1/c.
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 1 Figure 1. The shift. Note the numbering of the points T i