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Abstract.

In this paper a numerical study is provided to solve the aircraft conflict avoidance

problem through velocity regulation maneuvers. Starting from optimal control-

based model and approaches in which aircraft accelerations are the controls, and

by applying the direct shooting technique, we propose to study two different large-

scale nonlinear optimization problems. In order to compare different possibilities

of implementation, two environments (AMPL and MATLAB) and deterministic lo-

cal optimization solvers are used. Numerical results are discussed. They show that

the considered problem is really difficult to solve to global optimality, as different

local minima are found using different methods.

Keywords. air traffic management; conflict avoidance; speed regulation; optimal

control; Pontryagin’s maximum principle; interior point-based solvers; numerical

study.

1. Introduction

Aircraft conflict avoidance is crucial in air traffic management, and it is even more chal-

lenging as the air traffic is continuously increasing. The problem is to keep a given min-

imum safety distance for aircraft along their trajectories. In order to ensure safety within

the air traffic, minimum distances between aircraft have to be respected. Aircraft are said

in conflict if they are too close to each other. The associated problem is called aircraft

conflict avoidance. The actual norm of the separation between two aircraft is defined as

follows: 1000ft vertically and 5NM horizontally (with the units: 1NM (nautical mile) =

1,852m; 1ft (feet) = 0.3048m). In this context, various approaches to the aircraft conflict

avoidance problem have been provided. A survey is given by Kuchar and Yang in [9]. The

problem of aircraft conflict avoidance is largely investigated in terms of aircraft trajec-

tory deviations using altitude or heading changes. Recently, speed regulation appeared to

be more and more relevant as a maneuver for solving the problem. In 2008, the European

ERASMUS project (Bonini et al. [1]) proposed to use small speed changes to solve air-

craft conflicts. Based on velocity variations, new models and solution approaches, gener-



ally coming from mixed-integer programming, have been developed (see, e.g., Pallottino

et al. [10], Rey et al. [12], Cafieri [2,3]).

In this paper, we focus on numerical ways for solving the aircraft conflict avoidance

problem formulated as an optimal control problem. In Section 2, we present the opti-

mal control problem based on velocity changes that we address in this work. By defin-

ing a zone where aircraft are potentially in conflict and by using the necessary condi-

tions of the Pontryagin maximum principle, we reformulate the optimal control problem

into another equivalent one. In Section 3, we apply the direct shooting method to pro-

vide two equivalent NLP (Nonlinear Programming) large-scale optimization problems.

In Section 4, a numerical study on the solution of the NLP problems is done using two

different modeling languages: AMPL and MATLAB. Section 5 concludes the paper.

2. Optimal control models

The aircraft conflict avoidance problem that we address in this paper has the follow-

ing assumptions: (i) en-route flights (cruise phase); (ii) tactical phase (few time before

potential conflicts); (iii) planar cartesian positions of the aircraft; (iv) no wind.

In the following optimal control problem (P) based on velocity variations, we

choose to minimize a quadratic-energy cost function. The controls are the accelerations

of each aircraft i and they are denoted by ui. Let I denotes the set {1, · · · ,n}, where n is

the number of aircraft evolving through a time window [t0, t f ]. The state variables are the

velocity vi and the (planar) position xi of the aircraft; xi(t) ∈ R
2 represents the planar

cartesian coordinates. Let di ∈R
2 denotes the fixed planar direction of the aircraft i. The

state variables are subject to dynamical laws yielding to differential equations on the ve-

locity and the position; this defines the system of state equations of our model. In this

optimal control problem, the initial positions and velocities of the aircraft are known as

well as the final velocities (the final positions of the aircraft are free). One of the main

difficulties of this problem is given by the separation constraints. These ones are concave

depending on the positions of the aircraft.
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min
u

n

∑
i=1

∫ t f

t0

u2
i (t)dt

s.t.

v̇i(t) = ui(t) ∀t ∈ [t0, t f ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [t0, t f ], ∀i ∈ I

ui ≤ ui(t)≤ ui ∀t ∈ [t0, t f ], ∀i ∈ I

vi ≤ vi(t)≤ vi ∀t ∈ [t0, t f ], ∀i ∈ I

xi(t0) = x0
i vi(t0) = v0

i ∀i ∈ I

vi(t f ) = v
f
i ∀i ∈ I

‖ xi(t)− x j(t) ‖
2 ≥ D2

∀t ∈ [t0, t f ], ∀i < j, (i, j) ∈ I2



To solve this problem, we can apply direct shooting methods on (P). In Cellier

et al. [4], we observed that we can decompose the problem (P) into subproblems by

considering different ‘zones’ with respect to the separation constraints. Thus, a temporal

‘zone’ denoted by [tZ , tZ ] ⊆ [t0, t f ] is defined. In this zone, the aircraft are potentially

in conflict while outside the zone the separation constraints are proved to be always

satisfied. Hence, by previously identifying the time zone [tZ , tZ ], we can split the optimal

control problem into two parts, respectively from t0 to tZ and from tZ to t f . By using the

necessary conditions of Pontryagin’s Maximum Principle (Pontryagin et al. [11]), we

proved in Cellier et al. [4] that an analytical solution can be provided for all time t in

[tZ , t f ]. Thus, the problem (P) can be reformulated into an equivalent optimal control

problem as follows:

(PZ)











































































































min
u

n

∑
i=1

∫ tZ

t0

u2
i (t)dt +

(v f
i − vi(tZ))

2

t f − tZ

s.t.

v̇i(t) = ui(t) ∀t ∈ [t0, tZ ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [t0, tZ ], ∀i ∈ I

ui ≤ ui(t)≤ ui ∀t ∈ [t0, tZ ], ∀i ∈ I

vi ≤ vi(t)≤ vi ∀t ∈ [t0, tZ ], ∀i ∈ I

ui ≤
v

f
i − vi(tZ)

t f − tZ
≤ ui ∀i ∈ I

xi(t0) = x0
i vi(t0) = v0

i ∀i ∈ I

‖ xi(t)− x j(t) ‖
2 ≥ D2

∀t ∈ [t0, tZ ], ∀i < j, (i, j) ∈ I2

Notice that the fixed final velocity v
f
i appears in the objective function of (PZ), so it

is not necessary to keep it as a final condition as in problem (P). Problem (PZ) only

depends on the time window [t0, tZ ]. For all time t in [tZ , t f ], the solution is given by:

ui(t) =
v

f
i −vi(tZ)

t f −tZ
, vi(t) =

v
f
i −vi(tZ)

t f −tZ
t+v0

i and xi(t) =
di
2

v
f
i −vi(tZ)

t f −tZ
t2+v0

i di t+x0
i , see Cellier

et al. [4].

To solve the problem (PZ), we apply a direct shooting method based on time dis-

cretization. In the following section we discuss different possible formulations.

3. Applying the direct shooting method

By applying the direct shooting method to the optimal control problem (PZ), the ordi-

nary differential equations are computationally treated by discretizing the variables ap-

pearing in the equations with respect to the time. Numerical integrators (for example,

Euler-type integrators) are used to approximate the differential equations. In Cellier et

al. [4], we proposed to use two discretization steps, one tight enough to check if separa-

tion constraints are respected (detection step), and another one to compute the value of



control variables, this step (resolution step) is larger than the previous one. Let ρ be the

ratio between detection and resolution steps (e.g., if the detection (resp. resolution) step

is 15′′ (resp. 1′), ρ corresponds to 4).

By discretizing the time in [t0, tZ ] into NZ steps (NZ = ⌈ tZ
h
⌉), and then by discretizing

the controls ui and the state variables vi,xi (for all aircraft i), we obtain the following

NLP problem:
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min
(x,v,U)∈R2nNZ .nNZ .nmZ

h ∑
i∈I



ρ ∑
l∈MZ

(U
(l)
i )2 +(ρ −1)

(

U
(mZ−1)
i

)2

+

(

v
f
i − v

(NZ)
i

t f −NZh

)2




s.t.

v
(k+1)
i = NUMvi

(U
(⌊ k

ρ
⌋)

i ) ∀k ∈ K,∀i ∈ I

x
(k+1)
i = NUMxi

(v
(k)
i ) ∀k ∈ K,∀i ∈ I

ui ≤U
(l)
i ≤ ui ∀l ∈ MZ ,∀i ∈ I

ui ≤
v

f
i − v

NZ
i

t f −NZ ×h
≤ ui ∀i ∈ I

vi ≤ v
(k)
i ≤ vi ∀k ∈ K,∀i ∈ I

x
(0)
i = x0

i v
(0)
i = v0

i ∀i ∈ I

‖ x
(k)
i − x

(k)
j ‖2 ≥ D2

∀k ∈ {⌊
tZ

h
⌋, ...,⌈

tZ

h
⌉}, ∀i < j,(i, j) ∈ I2

where NUM is a numerical integrator depending on the state variables. The state vari-

ables vi and xi are computed using a discretization step h while the control variables Ui are

computed using a discretization step ρh; U
(⌊ k

ρ
⌋)

i , v
(k)
i and x

(k)
i denotes values of the accel-

eration, velocity and respectively position at time tk = kh. Variables are indexed on sets

K = {0, . . . ,NZ −1}, K̄ = {0, . . . ,NZ}, MZ = {0, . . . ,mZ −2} and MZ = {0, . . . ,mZ −1}

with mZ = NZ
ρ

.

Problem (P) has nNZ

(

3+ 1
ρ

)

variables and 3n(NZ − 1) equality constraints and

n(n−1)
2

(

⌈ tZ
h
⌉−⌊

tZ
h
⌋
)

inequality constraints (separation constraints) and 2n(mZ +NZ +1)

bound constraints.

Notice that the NLP only depends on the discretized controls U
(l)
i , as the discretized

state varibles can be calculated from the equality constraints. Hence, we can provide a

more compact NLP formulation as follows:
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s.t.

ui ≤U
(l)
i ≤ ui ∀l ∈ MZ , ∀i ∈ I

ui ≤
v

f
i −NUMvi

(U
(⌊

NZ
ρ
⌋)

i )

t f −NZ ×h
≤ ui ∀i ∈ I

vi ≤ NUMvi
(U

(⌊
NZ
ρ
⌋)

i )≤ vi ∀i ∈ I

x
(0)
i = x0

i v
(0)
i = v0

i ∀i ∈ I

‖ NUMxi
(NUMvi

(U
(⌊ k−1

ρ
⌋)

i ))−NUMx j
(NUMv j

(U
(⌊ k−1

ρ
⌋)

j )) ‖2 ≥ D2
,

∀k ∈ {⌊
tZ

h
⌋, ...,⌈

tZ

h
⌉}, ∀i < j,(i, j) ∈ I2

Problem (Pc) has nmZ variables and 4n+ n(n−1)
2

(

1+ ⌈ tZ
h
⌉−⌊

tZ
h
⌋
)

inequality con-

straints (separation constraints) and 2nmZ bound constraints. Thus, the more compact

problem (Pc) has a smaller number of variables and constraints. On the other hand, in

(Pc) a number of mathematical expressions (arising in the objective and the constraints)

depend implicitly on the control variables.

4. Numerical implementations and experiments

We implement the two formulations (P) and (Pc) in two different computational envi-

ronments, respectively MATLAB and AMPL [6]. We solve the NLP problems using the

following solvers:

- MATLAB/fmincon selecting the ‘sqp’ solver (based on a sequential quadratic

programming method);

- MATLAB/fmincon selecting the ‘interior-point’ solver;

- AMPL/SNOPT (based on an active set method, see [8]);

- AMPL/IPOPT (based on an interior point method, see [13]).

AMPL is a declarative modeling language for mathematical programming, therefore

it does not allow us to implement the compact formulation (Pc). On the contrary, using

MATLAB we can implement both formulations (P) and (Pc).

Computational experiments are carried out using six different possibilities: the two

solvers within AMPL applied to (P) and the two solvers within MATLAB applied to (P)
and (Pc).

Data problems were generated with the following characteristics: the trajectory paths

are straight; the horizontal separation norm is 5NM; the initial velocity for each air-



craft i corresponds to v0
i = 447NM/h; the velocities are bounded based on the ERAS-

MUS directives [7] by a small range: [0.94 v0
i , 1.03 v0

i ]; the accelerations are bounded,

based on Eurocontrol’s Base of Aircraft Data (BADA) [5], ui = −ui = 4000NM/h2; the

problem-configuration time window corresponds to [t0, t f ] with t0 = 0 and t f = 1h (ex-

cept for ‘pb7’, where t f = 45′); terminal conditions are to return to the initial velocities

(i.e, vi(t f ) = v
f
i = v0

i = 447NM/h).

The number of aircraft n, the number of potential conflicts, the zone duration per-

centage with respect to the whole time window, the number of variables and the numbers

of constraints for the two formulations (P) and (Pc) are reported in Table 1.

Table 1. Configuration data: number of aircraft, number of potential conflicts, zone duration purcentage with

respect to the whole time window, number of variables and number of constraints for the two formulations .

ID number of number of zone time (P) form. (Pc) form.

aircraft conflicts percentage var. constr. var. constr.

pb1 7 3 15.77 2821 5593 217 2555

pb2 8 4 15.77 3536 7368 272 3560

pb3 9 6 21.99 4095 8820 315 4410

pb4 6 3 4.56 2574 4641 198 1869

pb5 8 4 4.56 3432 6340 264 2644

pb6 5 5 26.97 3120 5910 240 2550

pb7 2 1 6.08 546 936 42 348

In our numerical experiments, for all the instances the detection/resolution steps are

h= 15′′ and ρh= 1′ (ρ = 4). Notice that the acceleration controls are piecewise constant.

For all the instances, the starting points are deduced from the controls equal to 0 (for (P)
all the variables velocity and position are computed from the null control).

The numerical tests are performed on two PC computers with 2.53GHz/4GB for the

solvers using AMPL and with 3.2GHz for solvers using MATLAB.

We first performed tests using the two MATLAB/fmincon algorithms ‘sqp’ and

‘interior-point’, applied on two formulations (P) and (Pc). We remark that:

- The two algorithms applied on formulation (P) are unable to provide a solution

within the time limit 10′. Thus, for MATLAB solvers, the use of formulation (Pc)
appears to be more robust.

- ‘sqp’ algorithm is also inefficient on formulation (Pc). Only one instance is

solved: ‘pb7’ (the smallest one with only two aircraft). In this case, ‘sqp’ provides

an answer (in 19 iterations) with an objective value of 1835.4 within 54.351 sec-

onds. Notice that this local minimum is better than the one provided by the

‘interior-point’ algorithm of MATLAB but it is still greater than the one obtained

by IPOPT (see Table 2 discussed below).

Hence, only the solutions corresponding to the MATLAB/fmincon-‘interior-point’ algo-

rithm applied to formulation (Pc) are considered in the following.

In Table 2, we provide numerical results obtained using the AMPL environment

and SNOPT and IPOPT solvers on formulation (P), and MATLAB with the fmincon-

‘interior-point’ routine on formulation (Pc) only. In the two first columns, results are re-



Table 2. Comparison of numerical results: (P) with AMPL/SNOPT, (P) with AMPL/IPOPT, (Pc) with MAT-

LAB/fmincon-‘interior-point’ algorithm.

(P) with AMPL/SNOPT (P) with AMPL/IPOPT (Pc) with MATLAB/fmincon

nb it. obj value time nb it. obj value time nb it. obj value time

pb1 3100 4339.58 14.477 276 4339.58 5.413 55 5824.4 43.415

pb2 4056 5180.19 19.048 245 5180.19 10.621 − − > 10′

pb3 − − > 10′ 556 39742.2 52.869 − − > 10′

pb4 2804 2882.6 14.726 1175 2882.6 56.474 48 3576.9 22.979

pb5 5384 3843.47 65.193 1565 3843.47 116.189 45 4395.2 41.668

pb6 3924 4553.92 9.126 394 8282.67 19.701 130 22235 127.765

pb7 − − > 10′ 91 1631.47 0.484 100 3152.6 3.947

ported for two different solvers SNOPT and IPOPT which use the same formulation (P),
the same environment AMPL and the same computer. Hence, these results are directly

comparable. We remark that:

- IPOPT always provide a local solution while SNOPT fails on two cases ‘pb3’

and ‘pb7’.

- All the local solutions correspond, except for ‘pb6’ where SNOPT finds a better

local minimum than IPOPT.

- When the local minima found are the same, IPOPT is faster than SNOPT on two

instances ‘pb1’ and ‘pb2’, and it is the contrary on the two instances ‘pb4’ and

‘pb5’. This may depend on the size of the zone: 15.77% for ‘pb1’ and ‘pb2’ and

4.56% for ‘pb4’ and ‘pb5’.

- As expected for an active-set solver compared to an interior point solver, the num-

ber of iterations performed by SNOPT to find a local solution is much more

larger than the one of IPOPT, even though the iterations of SNOPT are faster.

According to these numerical results, IPOPT appears to be more robust than SNOPT.

It seems however quite difficult to establish which solver is faster than the other. Notice

that the IPOPT presolver reduced considerably the size of the problems: e.g., on problem

‘pb3’, we have 4095 variables and 8820 constraints (see Table 1), and they are reduced

by the IPOPT presolver to 2946 variables and 4575 constraints.

Concerning the numerical results provided in Table 2 by the MATLAB/fmincon-

‘interior-point’ algorithm applied on (Pc), we remark that:

- All the local solutions are greater than those provided by IPOPT and SNOPT.

- The number of iterations is in general quite low. This implies that one iteration

of the MATLAB interior point solver is more expensive than an iteration of the

interior point solver in the AMPL environment.

- MATLAB/fmincon-‘interior-point’ algorithm is unable to provide a solution

within the time limit 10′ for the two most difficult instances, even using the com-

pact formulation (Pc).

- The CPU-times are generally greater than those provided by IPOPT and SNOPT;

although the CPU-times are difficult to compare because we used two different

computers.



Therefore, the solutions provided by MATLAB appear to be less interesting compared to

those provided via the AMPL environment on the addressed problem.

We notice that the local minima of (P) are also local minima of (Pc); this is easily

proved by taking as a starting point of the ‘interior-point’ and ‘sqp’ algorithms of MAT-

LAB the local minima coming from the use of the IPOPT.

We also remark that the different solutions provided by the distinct applied optimization

solvers show that the addressed large-scale NLP problems exhibit several local minima

and are computationally difficult to solve to global optimality.

5. Conclusion

We discussed about the numerical solution of an optimal control model to address the air-

craft conflict avoidance problem with velocity regulation. By decomposing the optimal

control problem into zones and by applying the direct shooting method, two equivalent

but distinct large-scale NLP problems were generated. We then use different solvers and

two computational environments, MATLAB and AMPL, to solve these NLP problems.

Numerical results show clearly that on formulation (P) the solvers used in the AMPL

environment are the most efficient. Moreover, the IPOPT solver using AMPL appears to

be the most robust. The numerical study discussed in this paper also proved that the ad-

dressed NLP problems are difficult to solve to global optimality, as different approaches

generally yield to different local minima.
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sus optimaux. Editions Mir, Moscou, 1974.

[12] D. Rey, C. Rapine, R. Fondacci, and N.-E. E. Faouzi. Potential air conflicts minimization through speed

regulation. Transportation Research Board, 2012.
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