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Abstract. We are interested in aircraft trajectories seen as stochastic processes.
These processes evolve in an unknown atmospheric random environnment. As sev-
eral aircraft parameters are unknown, such as true airspeed (TAS) and wind, we
have to estimate them.

To this end, we suggest to use ensemble weather forecasts, which give different
scenarios for the atmosphere, with a system of trajectory predictions. In this way,
we evaluate the likelihood of each element and we construct a random weather
environment organized by the element weight. To get this result, we use sequential
Monte Carlo methods (SMC) in the special context of random environment.

We propose to use particle Markov chain Monte Carlo method (pMCMC) to
estimate the aircraft parameters.

Keywords. Non-linear filtering, random environment, estimation, sequential
Monte Carlo method, particle Markov chain Monte Carlo method, aircraft
trajectories

Introduction

To satisfy the future demand in terms of air transportation, the present air-traffic manage-
ment system needs to be improved. To this end two projects, NEXTGen in the United-
States and SESAR in Europe, have been launched. In both cases, the selected appproach
consists in constraining in time and space the aircraft position (4D-trajectory). Moreover,
the SESAR project aims to ensure free flights avoiding any delaying tactics. Therefore
trajectory predictors have to be accurate and reliable. In that way, the workload of air-
traffic controllers can be reduced using decision support tools. Moreover the capacity of
the airspace can be used to its maximal capacities.

To compute aircraft trajectories in advance, trajectory predictors need different in-
formation. Some concern the flight intent, others are directly related to the aircraft and
finally some are environmental parameters, such as wind and temperature. An important
source of uncertainty in aircraft trajectory prediction concerns the meteorological param-
eters. Indeed a part of the along track error in predicting the aircraft trajectories is due to
the weather forecasting error.



Up to now, aircraft trajectory predictors use only one weather deterministic forecast.
A solution which was proposed was to use statistical errors on weather forecast to get
statistical errors on trajectory prediction. The problem with this method is that the statis-
tics used are not space depending whereas the weather forecasting error is. This work
aims to give a solution to this problem using ensemble weather forecasts. Indeed national
meteorological center are able to provide them. These forecasts give several atmospheric
evolution scenarios which reflects the lack of knowledge about the initial state. These
scenarios enable to explore the uncertainties about the state of the atmosphere. Another
fact at this point is that ensemble forecasts are not delivered with a probability distribu-
tion. This problem can be tackled using stochastic methods to weight the elements of the
ensemble weather forecasts regarding to air-traffic observations.

In this work we suppose that we have air-traffic observations and an aircraft trajec-
tory predictor. Each aircraft trajectory prediction has an error part and all the aircrafts
trajectories in the same area are sharing the same meteorological situation. Now, consid-
ering we have a set of weather forecasts, we can evaluate a performing score regards to
trajectory prediction errors over the last minutes.

In order to formalise these two ideas, the first part is dedicated to give the formal
framework of this problem. Then the ensuing algorithms are explained and finally we
give some numerical results on an academic example.

1. Formalism

To get the likelihood of wind proposals with respect to air-traffic radar observations, a
mathematical modelization has to be done. We choose to modelize aircraft trajectories
as stochastic processes evolving in a random meteorological environment. Before going
deeper into the mathematical formalism, we adopt the following notations. For a proba-
bility measure µ and a measurable function f , µ( f ) is the expectation of the function f
for the measure µ . For a probability operator Q(x,dy) giving the probability to arrive in
the element dy starting from x, µQ(dy) =

∫
µ(dx)Q(x,dy) is the probabiliy of the event

dy for the operator Q averaged by the measure µ . Finally µQ( f ) =
∫

µ(dx)Q(x,dy) f (y)
is the expectation of the function f for the operator Q through the measure µ .

1.1. Learning the Trajectory Processes in a Random Environment

Before considering aircraft trajectories, we decompose the real wind at time n, W r
n into

two parts, the forecasted part W f
n and the forecasting error part X1

n . We consider X1
n ∈E(1)

n
as a random environment where the aircraft trajectories live. This process is a Markov
chain of transition kernel M(1)

n from
(

E(1)
n−1,ε

(1)
n−1

)
to
(

E(1)
n ,ε

(1)
n

)
and initial distribution

η
(1)
0 . The aircraft positions at time n are denoted by X2

n ∈ E(2)
n . This is also a Markov

process of transition kernel M(2)

x(1)n ,n,θ
from

(
E(2)

n−1,ε
(2)
n−1

)
to
(

E(2)
n ,ε

(2)
n

)
which depends

on the parameter θ ∈ (S,S )1 and initial distribution η
(2)

x(1)0 ,0,θ
. We consider that the fixed

1θ can indicate more than one parameter which are grouped under this unique notation such as true airspeed,
mass, throttle



parameter θ is a realization of the random variable Θ whose density is λ . In this work
θ denotes the true airspeed (TAS) of the aircraft. The transition kernel M(2)

x(1)n ,n,θ
uses the

forecasted wind W f
n and depends on the environment realization x(1). Finally we have

air-traffic radar observations at time n denoted by Yn ∈ Fn which are observations of X2.
Considering the family

(
(X1

n ,X
2
n ),Yn

)
n≥0 ∈Ω = ∏

n≥0
(En×Fn) = ∏

n≥0
E(1)

n ×E(2)
n ×Fn,

for each θ we associate a signal/observation model. We endowed Ω with the σ -algebra
G = (Gn)n≥0 and the distribution of probability P. Let P the distribution on (Ω,H )

defined by its restrictions Pn to Ωn =
n
∏

p=0
E(1)

p × E(2)
p × Fp. The stochastic process{

X1
n ,X

2
n ,Yn

}
n≥0 is a Markov chain under Pn with respect to its natural filtration Hn and

with transition kernel Tn,θ from (Ωn−1,Hn−1) to (Ωn,Hn) defined by

Tn,θ

(
(x(1)n−1,x

(2)
n−1,yn−1),d(x

(1)
n ,x(2)n ,yn)

)
= gn,θ (x

(1)
n ,x(2)n ,yn)M

(1)
n

(
x(1)n−1,dx(1)n

)
M(2)

x(1)n ,n,θ

(
x(2)n−1,dx(2)n

)
qn(dyn)

(1)

where gn,θ is a collection of bounded measurable functions from
(

E(1)
n ×E(2)

n ×Fn

)
to

(0,∞) and represents the likelihood functions. The initial distribution of this chain is
defined by Eq. (2).

η0,θ

(
d(x(1)0 ,x(2)0 ,y0)

)
= η

(1)
0 (dx1

0)η
(2)

x(1)0 ,0,θ
(dx2

0)g0,θ (x
(1)
0 ,x(2)0 ,y0)q0(dy0) (2)

where η
(1)
0 ∈P(E(1)

n ) and η
(2)

x(1)0 ,0,θ
∈P(E(2)

n ).

Equation (1) means that the transition kernel of the chain (X1
n ,X

2
n ,Yn) from time

step n− 1 to time step n can be decomposed in three steps. The first one corresponds
to the evolution of the environment with the kernel M(1), the second step consists in the
evolution of the trajectory process X2 depending on the current environment realization
x(1)n and the parameter θ . The third step is an updating step which is done using the
likelihood function gn,θ .

We fix the sequence of observations such that Y = y, and we denote gn,θ (x
(1)
n ,x(2)n ,yn)

by Gn,θ (x
(1)
n ,x(2)n ).

Before considering the case where the environment is not known, we fix it such that

X (1)
[0,n] = (x(1)0 , . . . ,x(1)n ) ∈

n
∏

p=0
E(1)

p and we get :

P(2)

x(1)
[0,n],n,θ

(
X2
[0,n] ∈ d(x(2)0 , . . . ,x(2)n )

∣∣Y[0,n−1] = (y0, . . . ,yn−1)
)
=

1
Z θ

x(1)
[0,n],n{

n−1
∏

p=0
G

p,θ ,x(1)p
(x(2)p )

}
η
(2)

x(1)0 ,0,θ

(
dx(2)0

)
M(2)

x(1)1 ,1,θ

(
x(2)0 ,dx(2)1

)
. . .M(2)

x(1)n ,n,θ

(
x(2)n−1,dx(2)n

)
(3)

with normalizing constant :



Z θ

x(1)
[0,n],n

= E
x(1)
[0,n],θ

(
n−1

∏
p=0

G
p,θ ,x(1)p

(
X2

p
))

> 0, (4)

and random potential functions :

G
p,θ ,x(1)p

: x(2)p ∈ E(2)
p 7→ G

p,θ ,x(1)p
(x(2)p ) = Gp,θ (x

(1)
p ,x(2)p ). (5)

The quantity defined by Eq. (3) is also denoted by Q
x(1)
[0,n],n,θ

and called the quenched

Feynman-Kac path measure. This formula represents the distribution of the path se-
quence (X2

0 , . . . ,X
2
n ) of the Markov chain X2 where the potential function G

p,θ ,x(1)p
repre-

sents the likelihood functions.
We can associate to this measure the quenched distribution flow which corresponds to
the terminal time marginals of these path distribution denoted by η

(2)
x(1),n,θ

and defined by

Eq. (6) for any measurable function fn of E(2)
n .

η
(2)

x(1)
[0,n],n,θ

( fn) = P(X2
n |Y[0,n−1] = (y0, . . . ,yn−1),X1

[0,n] = (x(1)0 , . . . ,x(1)n ),Θ = θ) (6)

The updated version of this distribution is then defined by Eq. (7)

η̂
(2)
x1
[0,n],n,θ

= P(X2
n |Y[0,n] = (y0, . . . ,yn),X1

[0,n] = (x(1)0 , . . . ,x(1)n ),Θ = θ) (7)

As it was proved in [1], the quenched Feynman-Kac distribution flow satisfies the
non-linear equation (8)

η
(2)

x(1)
[0,n],n,θ

= φ
(2)

n,θ ,x(1)
[0,n]

(
η
(2)

x(1)
[0,n−1],n−1,θ

)
(8)

= ψ
n−1,x(1)

[0,n−1],θ
(η

(2)

x(1)
[0,n−1],n−1,θ

)M(2)
x1

n,n,θ

where ψ
n−1,x(1)

[0,n−1],θ
is defined for any measurable function fn−1 of E(2)

n−1 by

ψ
n−1,x(1)

[0,n−1],θ
(η

(2)

x(1)
[0,n−1],n−1,θ

)( f ) =
1

η
(2)

x(1)
[0,n−1],n−1,θ

(G
x(1)n−1,n−1,θ

)
η
(2)

x(1)
[0,n−1],n−1,θ

(G
x(1)n−1,n−1,θ

f )

Equation (8) means that our terminal time marginal distribution evolves into two
steps, one updating step using the function ψ

n−1,x(1)
[0,n−1],θ

and one prediction step done

with the kernel M(2)

x(1)n ,n,θ
. The problem which arises here is that the random environment

where the stochastic process evolves is not known. Therefore quenched Feynman-Kac
measure are not sufficient to describe the problem. So another Feynman-Kac measure
has to be used. This time it is in distribution space, which allow us to consider the envi-
ronment as a random variable. To do so, let X ′n = (X1

n ,η
(2)
X1
[0,n],n,θ

) ∈ E ′n = E(1)
n ×P(E(2)

n ),



X ′n denoting the couple random environment and distribution of the aircraft positions
with respect to the random variable X1. As it was proved in [1], X ′n is a Markov chain
under Pη0 with transition kernel M′n,θ defined for any measurable function f ′n of E ′n and

(x1
n,η

(2)
x1
[0,n],n,θ

) ∈ E ′n by (9).

M′n,θ

(
(x1

n−1,η
(2)
x1
[0,n−1],n−1,θ

),d(x(1)n ,η
(2)

x(1)
[0,n],n,θ

)

)
( f ′n) =

∫
E(1)

n

M(1)
n (x(1)n−1,dx(1)n ) f ′n(x

(1)
n , φ̃

(2)

n,θ ,x(1)
[0,n−1]

(x(1)n ,η
(2)

x(1)
[0,n−1],n−1,θ

)) (9)

and initial distribution η ′0,θ ∈P(E ′0) defined by η ′0,θ (d(x,ν)) = η
(1)
0 (dx)δ

η
(2)

x(1)0 ,0,θ

(dν)

where the application φ̃
(2)

n,θ ,x(1)
[0,n−1]

is defined by Eq.(10).

φ̃
(2)

n,θ ,x(1)
[0,n−1]

(x(1)n ,η
(2)

x(1)
[0,n−1],n−1,θ

)(dx(2)n ) = φ
(2)

n,θ ,x(1)
[0,n]

(η
(2)

x(1)
[0,n−1],n−1,θ

)(dx(2)n ) (10)

The transition kernel M′n,θ can be interpreted as the integration of the non-linear equation
(8), which modelizes the evolution of the aircraft positions, over the current environment.
The most important point to keep in mind to distinguishφ (2) from φ̃ (2) is that in the
quenched framework we know the environment and its evolution in time whereas in this
distribution space X1 is a random variable.

Now we define the terminal time marginal distributions η ′n,θ and η̂ ′n,θ for any mea-
surable function f ′n of E ′n by Eqs. (11) and (15) respectively.

η
′
n,θ ( f ′n) = P(X1

n ,η
(2)
X1
[0,n],n,θ

|Y[0,n−1] = (y0, . . . ,yn−1),Θ = θ) (11)

As it was proved in [1], η ′ is also verifying the non-linear equation (12).

η
′
n = φ

′
n,θ (η

′
n−1,θ ) (12)

= ψ
′
n−1,θ (η

′
n−1,θ )M

′
n,θ

where ψ ′n−1,θ is defined for any measurable function f ′n of E ′n by Eq. (13).

ψ
′
n−1,θ (η

′
n−1,θ )( f ′n) = η

′
n−1,θ (G

′
n−1,θ f ′n)/η

′
n−1,θ (G

′
n−1,θ ) (13)

with the potential functions G′p,θ defined by Eq. (14),

G′p,θ : (x,µ) ∈ E ′n 7→ G′p,θ (x,µ) =
∫

E(2)
n

µ(dy)Gp,θ (x,y) = µ(Gn,θ (x, .)), (14)

These functions represent the probability that the observation of yn is made given that
Y[0,n−1] = (y0, . . . ,yn−1), X1

n = x(1)n and Θ = θ . The updated distribution η̂ ′n,θ , is defined
by Eq. (15).



η̂
′
n,θ = P(X1

n ,η
(2)
X1
[0,n],n,θ

|Y[0,n] = (y0, . . . ,yn),Θ = θ) (15)

By the multiplicative structure of these measures, it is easy to sequentially simu-
late them using particle approximation techniques. Section 2.1 is dedicated to the island
filtering method.

1.2. Bayesian Inference in a General State Space Model

Another part of the problem which has to be tackle concerns the estimation of the fixed
parameter θ whose the aircraft positions X2 depend. We know the a priori law λ , and we
want to estimate the a posteriori law µn(dθ) given by Eq. (16)

µn(Θ ∈ dθ) = P(Θ ∈ dθ |Y[0,n] = (y0, . . . ,yn)) (16)

=
P(Y[0,n] ∈ d(y0, . . . ,yn)|Θ = θ)P(Θ ∈ dθ)

P(Y[0,n] ∈ d(y0, . . . ,yn))

where,

P(Y[0,n] ∈ d(y0, . . . ,yn)|Θ = θ) =
n

∏
p=0

P(Yp ∈ dyp|Y[0,p−1] = (y0, . . . ,yp),Θ = θ)︸ ︷︷ ︸
hp(θ)

.

From the section 1.1, we have that the potential functions G′p,θ represent the likeli-
hood function and that the distribution η ′

θ ,n is the terminal time marginal. Therefore, Eq.
(16) can be written as follow :

µn(θ) =
1

Ẑn

n

∏
p=0

η
′
θ ,p(G

′
p,θ )︸ ︷︷ ︸

hp(θ)

λ (θ)

where the quantity Ẑn =
∫

S
Ẑ
′θ

n λ (θ)dθ , with Z
′θ

n = E

[
n
∏

p=0
G′p,θ (X

′
p)

]
.

The hp(θ) functions are not known. The solution proposed by [2] is to use their
particle approximations which are unbiased. This is the object of section 2.2.

2. Particle Approximations

The posterior densities η ′
θ ,p need to be approximated. In the case of unknown param-

eter the sequence of marginal likelihoods for a given θ : η ′
θ ,p(G

′
p,θ ), need also to be

estimated. We propose here to use particle approximation. Therefore we present two al-
gorithms, one in order to get the particle approximation of η ′

θ ,p which is called island
particle algorithm (IPF or IKF) and another one to get the estimation of the parameter θ

called particle Markov chain Monte Carlo method (pMCMC).



2.1. Island Particle Algorithm and Interacting Kalman filters

The quantity η ′
θ ,p, corresponds to the time marginal density of the couple (X1

n ,η
(2)
X1
[0,n],n,θ

).

To get its estimation we use an N weighted random sample, called particles. In our case,
particles are composed of two elements. One is a realization of the random environment;
the other one is the density of the position process attached to this environment. As basic
particle algorithms, it consists into three steps : an initialization according to the initial
distribution η ′

θ ,0, a prediction step using M′n,θ , and a resampling step defined by ψ ′n,θ .
In the first experiment we lead, we consider that aircrafts fly in straight lines which

means that M(2)

x(1)n ,n,θ
is linear. Moreover we suppose that observations were obtained with

an additional Gaussian noise. That means that once the environment is known the posi-
tion process can be estimated using Kalman filter which is optimal. Considering now we
have several realization of the random environment, we can use Interacting Kalman fil-
ters (IKF) technique.That is using different environment realizations, we will have differ-
ent Kalman filters, which enter into competition thanks to a selection stage. The first step
of IKF consists in initializing all the particles such that one Kalman Filter is associated
to one environment. Then comes one step of correction for any Kalman filters, then they
are selcted according to their difference to the observations. Then the environment and
the Kalman filters evolve with the kernel M(1) and M(2)

ζ i
p,p,θ

respectively. See Algorithm 1
for more details.
In the nonlinear case, to get the associated estimated distribution η

(2)
ζ i

n,n,θ
to each real-

ization of the environment a set of particles is generated. Therefore all the environment
realizations are endowed with a set of particles called an island. All these islands are
entering into competition in a selection step. The Island particle (IPF) algorithm is de-
tailed in Algorithm 2. As one can see, it is composed of five steps : one initialization,
two steps of mutation and two steps of selection. After initializing the particles, there is
a first step of selection concerning the island level. This selection is made with respect to
the probability proportional to the empirical mean of the individuals in each island. Then
a particle selection is made with respect to their own likelihood within the island. Then
the environment evolves and then the particles within the island.

2.2. Particle Markov Chain Monte Carlo Methods

When θ is unknown, we have to estimate the joint distribution of θ and X ′[0,n] condition-
naly on the sequence of observations y[0,n]. The main idea of pMCMC is to use particle
approximation within the framework of Markov chain Monte-Carlo method (MCMC) to
obtain the estimate.

Indeed MCMC methods such as Metropolis-Hasting (M-H) method are sampling
methods based on the construction of a Markov chain which has for invariant measure
the measure to sample, say µ . In our case the measure to sample is defined by Eq. (16),
the problem is that we do not know the hp functions. [2] suggests to use a particle ap-
proximation of them at each step of the Metropolis-Hasting algorithm.

Starting with any configuration θ(0), basic M-H algorithm consists in an iterating
two steps scheme. The first one proposes a random perturbation of the current state θ(i)
to get a new configuration θ ∗, this perturbation is made with a symmetric probability
transition kernel q. The second consists in generating a random number U ∼ U[0,1] and



Algorithm 1 Interacting Kalman Filter - IKF
Require: η ′0, M′ et ψ ′

Ensure: Particle approximation of p(x′n|y1:n,θ) and p(x′n|y1:n−1,θ)

Begin
1. INITIALIZATION p = 0
for i = 1, . . . ,N2 do

Sample ε i = (ζ i
0,ν

i
ζ i

0,0,θ
)∼ η ′0,

ζ i
0

i.i.d∼ η
(1)
0 , and ν i

ζ i
0,0,θ

= N (m
ζ i

0
,σ

ζ i
0
)

end for
p = 1
2. SELECTION OF ISLANDS
Sample Ip = (Ii

p)
N2
i=1 multinomially with proba ∝ (N (mζ i

p
,σζ i

p
)(Gp,ζ i

p
))N2

i=1
for i = 1, . . . ,N2 do

3. CORRECTION OF KALMAN FILTERS
Use a classical correction step of Kalman filter : ν i = N (mζ i

p
,σζ i

p
) −→ ν̂ i =

N (m̂ζ i
p
, σ̂ζ i

p
)

4. MUTATION OF ISLANDS

Sample independantly ζ i
p+1 according to M(1)(ζ

Ii
p

p , .)
5. MUTATION OF KALMAN FILTERS

Sample ν i
p+1 according to M(2)

p,ζ i
p+1,θ

(N (m̂
ζ

Ii
p

p

, σ̂
ζ

Ii
p

p

), .)

end for
p←− p+1 go to step 2.
End

letting θ(i+ 1) = θ(i) if the ratio µ(θ ∗)/µ(θ) is greater than U and letting θ(i+ 1) =
θ(i) otherwise.

pMCMC keeps these two steps and within the evaluation of the ratio, it adds another
approximation level. Indeed to get the estimation of the likelihood functions η ′

θ ,p(G
′
p,θ )

it uses particle estimation. pMCMC method is detailed in the Algorithm 3.

3. Results

In our different numerical experiments, we only consider simple air traffic: three aircrafts
have to go from one waypoint to another one following a straight line, with constant
altitude and airspeed (2 with a TAS of 740km/h i.e. about 400kt, 1 with a TAS of 700km/h
i.e. about 377kt).

Concerning the random environment, we consider that the wind error is permanent
and non-uniform. The domain can be decomposed into two areas such that the unknown
wind error is constant in direction and strength over each area. The problem is that these
permanent uniform areas are delimited by an unknown vertical border. Therefore, the
forecasting wind error in both areas in terms of strength and direction, and the location
of the border have to be estimated. Moreover the TAS parameter has to be approximated.



Algorithm 2 Island Particle Filter - IPF
Require: η ′0, M′ et ψ ′

Ensure: Particle approximation of p(x′n|y1:n,θ) and p(x′n|y1:n−1,θ)

Begin
1. INITIALIZATION p = 0
for i = 1, . . . ,N2 do

Sample ε i = (ζ i
0,ν

i
ζ i

0,0,θ
)∼ η ′0,

ζ i
0

i.i.d∼ η
(1)
0 , and ν i

ζ i
0,0,θ

= 1
N1

N1
∑
j=1

ξ
i, j
0 where ξ

i, j
0

i.i.d∼ η
(2)
ζ i

0,0,θ

end for
p = 1
2. SELECTION OF ISLANDS

Sample Ip = (Ii
p)

N2
i=1 multinomially with proba ∝

(
1

N1

N1
∑
j=1

Gp(ζ
i
p,ξ

i, j
p )

)N2

i=1
for i = 1, . . . ,N2 do

3. SELECTION OF PARTICLES INSIDE EACH ISLAND

Sample Ji
k = (Ji, j

k )N1
j=1 multinomially with proba ∝

(
Gp(ζ

Ii
k ,ξ

Ii
k, j

k )

)N1

j=1
4. MUTATION OF ISLAND

Sample independantly ζ i
p+1 according to M(1)(ζ

Ii
p

p , .)
for j = 1, . . . ,N1 do

5. MUTATION OF PARTICLES

Sample ξ
i, j
p+1 according to M(2)

p,ζ i
p+1,θ

(ξ Ii
p,J

i
p , .)

end for
end for
p←− p+1 go to step 2.
End

The aircraft configuration has been choosen such that only one aircraft experiments the
unknown limit.

Then, the observation process is gotten from radar observations. As they can have
different mode, results obtained with mode-C radar observations (aircraft positions only)
and those obtained with mode-S radar observations (aircraft positions and deduced wind)
will be compared. In this work, the observations are obtained from a toy model perturbed
with a N (0,0.1) on each aircraft position and in presence of mode-S radar observations
with a N (0,0.1) on each aircraft position and for the deduced wind with a N (0,

√
5).

The period of sampling observations is 15 seconds.
Consequently, all the ingredients needed to perform and compare the results ob-

tained with IPF or IKF method within pMCMC algorithm are available. In this exam-
ple the experiment simulates 42 minutes of air-traffic and the parameter estimation is
refreshed every six minutes. A Gaussian kernel with standard deviation of 0.01 has been
used to perform the pMCMC algorithm, the initialization of the proposal for the TAS
has been made with an independant Gaussian perturbation of the true value for each air-
craft of standard deviation 10. The number of iterations of the M-H algorithm has been



Algorithm 3 Particle Metropolis Hasting algorithm
Require: η ′0, θ(0), q
Ensure: estimation of p(Θ,x′0:T |y1:T ) by particle method

Begin
1. Let θ(0), filter by particle method (IKF or IPF) pθ(0)(x′1:T |y1:T ), sample X ′1:T (0)∼
pθ(0)(.|y1:T ) and compute p̂θ(0)(y1:T )
2. Iterate i≤ 1
θ ∗ ∼ q(.|θ(i−1))
Filter by particle method p̂θ∗(x′1:T |y1:T ), sample X

′∗
1:T ∼ p̂θ∗(.|y1:T ) and compute

p̂θ∗(y1:T )
With the probability

1∧ p̂θ∗(y1:T )p(θ ∗)q(θ(i−1)|θ ∗)
p̂θ(i−1)(y1:T )p(θ(i−1))q(θ ∗|θ(i−1))

we have θ(i)= θ ∗, X ′1:T (i)=X
′∗
1:T , p̂θ(i)(y1:T )= p̂θ∗(y1:T ) or θ(i)= θ(i−1), X ′1:T (i)=

X1:T (i−1), p̂θ(i)(y1:T ) = p̂θ(i−1)(y1:T )

End

Table 1. RMSE integrated over aircraft trajectories between estimated aircraft positions and true positions for
IKF and IPF method

IKF IPF

mode-C 3.33 4.09

mode-S 5.53 6.07

fixed to 10. Concerning IPF or IKF, in each area, 5 different proposals for wind force
normally distributed around the true value, 5 for directions and 5 for border location uni-
formly distributed around the true value are considered. Random environment proposals
are obtained with all possible combinations of those three ingredients, i.e 3125 particles.

The first numerical result, suggest that IKF are better in terms of root mean square
error (RMSE) integrated over the whole trajectory, see Table 1. As we have already
mentionned, Kalman filter is optimal in linear/Gaussian system. But as it may be noticed
on Figure 1, the weight evolution of wind proposal for the area 1 do not suggest that there
is a weight concentration on one of the direction for the IKF method. Whereas for the
IPF method, there is a darker area formed around one wind proposal which corresponds
to the real one. Indeed Kalman Filters anihilate the effect of the wind on trajectory errors
by the correction step. Concerning the wind force, see Figure 2, one can see that the
relative error of the estimated wind force to the real one is of order 0.02 and not sensible
to the method used. Indeed this error is almost the same whether IPF method has been
used or IKF method. Therefore, as the algorithm aimed to learn the likelihood of wind
proposals and that IPF algorithm gives better results on wind direction we then consider
only results obtained with IPF algorithm.

As regards the limit, Figure 3 represents the likelihood evolution of the vertical limit
proposals over time. These proposals are sorted in ascending order on the x-coordinate.
First all the limit proposals are equivalent as no aircrafts experiment the limit yet. Remind



IKF IPF

Figure 1. Likelihood evolution (in gray scale) over time (y-axis from bottm to top) of direction proposals
(x-axis) obtained with IKF or IPF for one uniform area

Figure 2. Evolution in time (x-axis) of the relative error of estimate wind force for one area with IKF (solid
line) of IPF (dotted line) method to the real wind force

that only one aircraft experiments the limit (from right to left). Then, only the most on the
right proposed limits have a low likelihood, as the aircraft which experiment it does not
go throught the limit yet. Then more the aircraft goes on the left more the high likelihood
limit proposal are concentrated on the left. The difference between mode-C and mode-S
observations can be noticed on Figure 3. Indeed, the difference between high and low
likelihood limit proposal is sharper when mode-S radar is used.

Regarding the parameter estimation, pMCMC method gives a relative error for the
estimated true airspeed of standard deviation 2 whereas the first proposition was of stan-
dard deviation 10. Nevertheless, as one can observe on Figure 4, the TAS estimation is



Mode-C Mode-S

Figure 3. Time evolution (y-axis from bottom to top) of weight (grayscale) of the different limit proposals
(x-axis)

not enhanced by the additional wind information. In this experiment, it should be prefer-
able to use mode-S radar observations as they give better results.

mode-C mode-S

Figure 4. Estimated aircraft true airspeed by pMCMC method over the seven recycling forecast

Conclusion

The methodology developped in this work allows us to give a weight to each element set
of the ensemble weather forecast regarding the traffic-observations. That is we can infer
the random environment learning the likelihood of wind proposals while learning some
flight parameters such as true airspeed.
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