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Abstract. Two major projects have been initiated to improve air traffic management

by enabling 4D trajectory planning, whereby the aircraft plan their trajectory both

in position and in time. In this paper, we are interested in a Free Flight variant of

the concept, whereby airspace users are allowed maximum freedom when selecting

routes: aircraft are no longer restricted to fly along airways; rather, they are allowed

to fly along optimal routes, from origin to destination, following optimal altitudes,

using favourable winds and avoiding hazards. Such optimal routes are good for the

environment, for the airlines, and for passengers.

The goal of our research is to generate trajectories which minimize congestion

and travel time of each aircraft in a way that is fair and efficient. We first optimize

the route of a single aircraft relying on an algorithm called Ordered Upwind. And

then, with a multi-agent system, we modify trajectories in order to minimize the

congestion and to stay as close as possible to the optimal trajectories.

Keywords. Weather, Trajectory planning, Ordered Upwind Method, Multi-agent

System

1. Introduction

1.1. Free-Flight Context

The Free-Flight concept [1] has been introduced in two major projects for air-traffic con-

trol: SESAR2 in Europe and NextGen3 in the United States. These projects have been

initiated to improve Air Traffic Management (ATM) so as to be able to cope with the

expected growth of air traffic for the next 20 years. The Free-Flight concept is based on

the notion of 4D trajectory planning, whereby aircraft will plan their trajectories both

in position and in time. To increase air traffic, airspace users will be allowed maximum

freedom when selecting routes, then aircraft will be no longer restricted to fly along air-

ways; rather, they will be allowed to fly along optimal routes, from origin to destination,

following optimal altitudes, using favourable winds and avoiding hazards. In this context,

1Corresponding Author: Brunilde Girardet, ENAC-MAIAA, F-31055 Toulouse, FRANCE; E-mail:

girardet@recherche.enac.fr
2Single European Sky Air traffic management Research
3Next Generation Air Transportation System



taking into account weather conditions, and especially wind, presents many advantages

in terms of fuel consumption and travel time. The benefits to fly along wind-optimal

routes have been studied in [2].

Removing fixed routes makes the traffic less predictable and increases the complex-

ity of conflict solving, so special attention must be paid during trajectory planning to

keep congestion below a safe level.

1.2. Related Work

Planning optimal trajectories is a rich and dynamic research domain with many applica-

tion areas like robotics or space. Depending on the problem needs, the issues are different

in nature and so are the techniques used to solve it. In ATM, optimality is defined using

a composite criterion with a term directly related to fuel consumption and a second one

linked with the congestion encountered along the flight path. A specificity of the problem

is the fact that optimality with respect to fuel consumption has to deal with the wind field

in the airspace, thus introducing an anisotropic criterion.

In [3], Jardin began to work on optimal aircraft trajectories in wind for some spe-

cific wind fields. He modelized his problem as an optimal control problem and solved it

using an indirect method. In [4], Ng extended Jardin’s work and developed a trajectory

optimization algorithm for minimizing aircraft travel time and fuel burn by combining

a method for computing minimum-time routes in winds on multiple horizontal planes,

and an aircraft fuel burn model for generating fuel-optimal vertical profiles. The main

drawback in using indirect methods is the need to find a good initial condition to start

the algorithm.

Another method to address optimal control problems is to solve the Hamilton-Jacobi

equation. In [5], Sethian and Valdirminsky introduced a new fast method, called Ordered

Upwind Method, for computing approximate solutions to a wide class of static Hamilton-

Jacobi equations with Dirichlet boundary conditions. This method is based on the pre-

vious work of Sethian in [6] on the Fast Marching Method, that has been developed to

solve the Eikonal equation (the special case of Hamilton-Jacobi equations in which the

problem is isotropic).

In [7], Alton used the Ordered Upwind method with the Semi-Lagrangian method

to generate optimal trajectories. The drawback of this method is the need for a local

minimization at each mesh point, which increases the computational time.

All of these methods are developed to optimize a single trajectory. In [7], Alton used

his method to compute optimal trajectories for two robots without collision. The com-

putational cost scales as a power of the number of conflicting robots and becomes pro-

hibitive even for small instances of the problem: taking into account the performances

of today computers, it is very difficult to plan more than two coordinated robots. With

this constraint, we look for another approach to deal with several trajectories while tak-

ing advantage of the knowledge of the optimal trajectory for one aircraft. Multi-Agent

Systems seem adapted to work with large and complex systems.

To be able to cope with the expected growth of air traffic, decentralized approaches

are studied to handle air traffic; there would then no longer be a centralized control

at ground to handle the air traffic, and each aircraft would be responsible for its own

trajectory.

In [8], Sislak studied such a decentralized air traffic planning and control to provide

a more efficient use of available airspace and to improve support for replanning and



collision avoidance. Each aircraft is able to plan its own trajectory, but also to detect

and solve conflicts with other aircraft. Each aircraft is controlled by an agent and the

agents are able to communicate with each other. Resolutions are performed in real-time;

the aircraft are flying when the agents solve a conflict. The agents can make use of all

degrees of freedom provided by flight dynamics: heading, altitude and cruise speed of

the aircraft can be modified.

In [9], Agogino also uses a multi-agent algorithm to reduce congestion. Unlike Sis-

lak’s work, one agent does not control one aircraft. An agent is associated to a fixed

(specific) location in order to decrease the congestion around this location. Each agent

controls aircraft around him with one of these three actions: setting separation between

aircraft, ordering ground delays, or performing reroutes. To choose the best control, the

agents use reinforcement learning.

In contrast to Sislak’s and Agogino’s work, we shall not use a multi-agent system to

control aircraft in real-time. Our goal is to generate all the trajectories before take off in

order to minimize time travel and congestion. We use the multi-agent system to modify

the optimal trajectories of each aircraft in order to decrease congestion. Nevertheless, the

multi-agent system principle involved is similar to Sislak’s and Agogino’s work.

1.3. Contributions

The main contribution in this paper is the introduction of a new model for the optimal

path planning problem in order to use the Eulerian discretization in the Ordered Upwind

Method. Usually, the drawback of this discretization is the computation of the roots of

a non-linear equation. In our case, we shall show that the resolution is easy since the

equation is quadratic.

We introduce also our future work on coordinated trajectories. From the knowledge

of the optimal trajectory for one aircraft, we look for a model based on multi-agent

systems to deal with several trajectories.

1.4. Overview of the Paper

This article is organized as follows. Section 2 describes how one optimal aircraft tra-

jectory is generated with respect to weather conditions. We present how we write our

problem as a Hamilton-Jacobi equation. Then, we review the Ordered Upwind method

to solve the Hamilton-Jacobi equation and we present results using this algorithm. Sec-

tion 3 presents our future works on how we deal with the optimal trajectories of each

aircraft to minimize congested areas.

2. Generating One Optimal Trajectory

2.1. Model

2.1.1. Aircraft Dynamics

As explained in Section 1.1, only en-route trajectories are concerned. We assume that

aircraft fly at a constant flight level and at a constant True Airspeed. The True Airspeed



is based on BADA 4 database. Under these assumptions, the aircraft equations of motion

are :

{

ẋ(t) =Va cos(θ(t))+Wx(x,y)

ẏ(t) =Va sin(θ(t))+Wy(x,y)
(1)

with (x,y) the aircraft position, θ the heading angle, Va the True Airspeed, Wx(x,y) the

east component of the wind and, Wy(x,y) the north component of the wind.

2.1.2. Optimization Problem

Our goal is to compute heading along a trajectory yielding the minimal travel time be-

tween fixed origin and destination. Assuming constant True Airspeed and flight level, it

turns out that the time optimal trajectory is also fuel optimal. Bolza formulation [10] of

the problem is:















































u(x,y) = min
θ

∫ t f

t0

1dt

s.t. ẋ(t) =Va cos(θ(t))+Wx

ẏ(t) =Va sin(θ(t))+Wy

(x(t0),y(t0)) = (x0,y0)

(x(t f ),y(t f )) = (x f ,y f )

(2)

It is convenient to let the control variable be a = (cos(θ),sin(θ)), a unit vector in

the direction of motion of the aircraft. The optimization problem becomes:























u(x) = min
a∈A

∫ t f

t0

1dt

s.t. ẋ = f (x(t),a(t))

x(t0) = x0 and x(t f ) = xf,

(3)

with x the aircraft position and f (x(t),a(t)) the ground speed of the aircraft at time t. In

Eq. (3), u(x) represents the minimum time required to reach the point x starting from the

initial point x0.

2.2. The Hamilton-Jacobi Equation

Our optimal control problem (3) can be written as a Hamilton-Jacobi equation. The steps

of the calculations can be found in [10]. The minimal-time optimal trajectory problem

for continuous problems is the solution of:

max
a∈A

{∇u(x). f (x,a)}= 1 (4)

4Base of Aircraft DAta, http://www.eurocontrol.int/services/bada



Eq. (4) can be rewritten as :

‖∇u(x)‖max
a∈A

{

∇u(x)

‖∇u(x)‖
. f (x,a)

}

= 1 (5)

Eq. (5) shows a correspondence between the optimal trajectory problem and a wavefront

propagation. The evolution of the front is described by Eq. (6) :

‖∇u(x)‖F(x,
∇u(x)

‖∇u(x)‖
) = 1 with F(x,n) = max

a∈A
{n. f (x,a)} (6)

where n is the outward unit vector normal to the front at the point x and F(x,n) is the

front speed in the direction n, u(x) represents the time at which the front passes through

the point x. Eq. (6) gives a correspondence between the speed of the wavefront, F(x,n),
and the speed of the aircraft, f (x,a).

Eq. (6) describes the evolution of the front only if the speed function, F , never

changes sign, in which case the front crosses a given point only once. If F is strictly

positive (resp. negative), then the front is expanding (resp. contacting).

In the isotropic case, F does not depend on the direction. Eq. (6) simplifies to:

‖∇u(x)‖F(x) = 1 (7)

Eq. 7 is known as the Eikonal equation. The method, called Fast Marching method,

developed by Sethian in [6] is a very efficient way to solve the Eikonal equation.

2.3. Ordered Upwind Algorithm

The Ordered Upwind algorithm was developed by Sethian and Valdirminsky for ap-

proximating the solution of the Hamilton-Jacobi equations. It was first introduced in

[5]. In [11], Sethian proved that the algorithm converges to the viscosity solution of the

Hamilton-Jacobi equations, a weak solution of a partial differential equation (PDE).

The principle of the Ordered Upwind algorithm is to avoid iterations through a care-

ful use of the information about the characteristic directions of the PDE. This princi-

ple makes the algorithm highly efficient. It exploits the fact that the value function, u,

is strictly increasing along the characteristics. u(x) is then constructed gradually using

the previous u(x) value along the characteristic. In general, characteristic directions of

the PDE are not known in advance. The strength of the Ordered Upwind method is the

ability to compute information about the characteristic as the solution is constructed. In

our problem, the characteristics of Eq. (4) represent the optimal trajectories.

Contrary to the Fast Marching Method for isotropic problem, the characteristic and

the gradient of u are not in the same direction. However, in [5], Sethian defined the

maximum angle between the characteristic and the gradient of u. In the algorithm, this

bound allows to select the mesh points used to compute the value u(x) at a given point

x. This bound can be computed from the bounds of the wavefront speed. We note F1 the

lower bound and, F2 the upper bound.

The numerical resolution of the Hamilton-Jacobi equation is similar to graph-search

algorithms such as Dijkstra’s algorithm. However, in opposition to graph-search algo-

rithms, the Ordered Upwind method is consistent, since when the grid is refined, the



obtained solution converges towards the exact solution of the Hamilton-Jacobi equation.

That the complexity of the method is O(N logN), with N the number of mesh points, the

same as for graph algorithms.

To compute the value function, u, we consider an unstructured triangulated mesh.

Let (x,xj,xk) be a simplex, the value of u(x) is computed from u(xj) and u(xk) if the

characteristic for the mesh point x lies inside the simplex (x,xj,xk). Let h be the max-

imum distance between two adjacent mesh points (i.e. if the mesh points xj and xk are

adjacent, then
∥

∥xj −xk

∥

∥6 h). All mesh points belong to one of these classes (Figure 1):

• Accepted is the set of mesh points where the function u has been computed and

frozen.

• Considered is the set of mesh points where an estimate, v, of u has been computed

(but not frozen).

• Far is the set of all other mesh points where an estimate, v, of u has not been

computed yet.

Two other sets are also created :

• AcceptedFront is defined as a subset of Accepted mesh points, which are adjacent

to some not-yet-accepted (i.e. Considered) mesh points.

• AF is defined as a set of line segments [xj,xk], where xj and xk are adjacent mesh

points on the AcceptedFront and xj and xk are adjacent to a Considered mesh

point x.

Considered

Far
AF

Accepted

Accepted Front

Figure 1. All the mesh points are assigned to three different sets: Accepted, Considered and Far. Accepted

Front is a subset of the Accepted set. The AF set describes the front.

For each Considered mesh point x, we define a new set called NearFront. It is a subset
of AF segments, which are close to the Considered mesh point x.

NF(x) =

{

(xj,xk) ∈ AF |∃x̃ on (xj,xk)s.t.‖x̃−x‖6 h
F2

F1

}

From this discretization of the work space, we present the algorithm introduced in [11]

to compute the propagation of a wavefront.

Ordered Upwind Algorithm

1. Start with all the mesh points in Far (u = + ∞);

2. Move the initial point x0 to Accepted (u(x0) = 0);



3. Move all the mesh points x adjacent to the initial point into Considered and eval-
uate the trial value v(x) as:

v(x) := min
xi∈NF(x)

vxi
(x) (8)

4. Find the mesh point x̄ with the smallest value of v among all Considered;

5. Move x̄ to Accepted (u(x̄) = v(x̄)) and update the AcceptedFront;
6. Move the Far mesh points x adjacent to x̄ in Considered and compute their trial

values by:

v(x) := min
xjxk∈NF(x)

vxjxk
(x) (9)

7. Recompute the values for all the other Considered x such that x̄xi ∈ NF(x) by:

v(x) = min

{

v(x), min
x̄xi∈NF(x)

vx̄,xi
(x)

}

(10)

8. If Considered is not empty, then go to step 4.

There are two equivalent methods to compute the trial value v(x) from a simplex

(x,xj,xk). The Semi-Lagrangian method requires performing a local minimization at

each mesh point, whereas the finite-differences upwind update formula requires finding

the roots of a non-linear equation. The semi-Lagrangian method is the most common

method [7], [12]. But, the Eulerian discretization is used here since, with our model, an

analytic solution of the discretized equation is found.

To compute the value vxjxk
(x), Eq. (6) is discretized using an upwind finite-

difference discretization on a simplex (x,xj,xk) such that the mesh points xj and xk are
adjacent. The gradient, ∇u(x), is approached for the simplex (x,xj,xk) with the approx-
imation of the directional derivative of u in the directions defined by vectors Pj and Pk.
The vectors Pj and Pk have to be linearly independent and are defined as :

Pj =
x−xj

∥

∥x−xj

∥

∥

and Pk =
x−xk

‖x−xk‖
(11)

We define the 2 by 2 non-singular matrix P having Pj and Pk as its rows.
Let w(x) be the column vector of the directional derivatives of u in the directions

Pj and Pk at the point x. Then, we can compute the gradient ∇u(x) from the directional
derivatives:

∇u(x) = P−1w(x) with w(x) =

[

u−u j

‖x−xj‖
u−uk

‖x−xk‖

]

(12)

We use a first-order discretization to approach the directional derivatives, w(x), such that:

w(x)≈ vxjxk
(x)α +β with α =

[

1
‖x−xj‖

1
‖x−xk‖

]

and β =





−u(xj)
‖x−xj‖
−u(xk)
‖x−xk‖



 (13)

The discretized equation is then:

∥

∥

∥
P−1w(x)

∥

∥

∥
F(x,

P−1w(x)
∥

∥P−1w(x)
∥

∥

) = 1 (14)



Recall that F(x,n) = maxa∈A {n. f (x,a)} (see Section 2.2). To be able to solve analyti-
cally Eq. (14), we need to simplify the expression for the speed of the wavefront F . As
the aircraft speed is f (x,a) = Vaa+W, we can prove that in our case the speed of the
wavefront is:

F(x,n) = Va + 〈 n,W 〉 (15)

Figure 2 shows the geometric representation of the speed of the wavefront in function of

the aircraft speed.

Wx

F(x,n)

f(x,a)1

2

n

Figure 2. The figure shows how to compute the speed of the wavefront F(x,n) in the normal direction n at

the point x. Circle 1 represents the true airspeed profile for the aircraft at the point x and circle 2 represents the

speed of the aircraft profile f (x,a) for all a at the point x. The speed of the wavefront F(x,n) is equal to the

maximum of the projection of the aircraft’s speed profile f (x,a) on the direction normal n.

From Eq.(15) and Eq.(14), we obtain:
∥

∥

∥
P−1w(x)

∥

∥

∥

2
V 2

a =
(

1−〈P−1w(x),W 〉
)2

(16)

Eq. (16) is a quadratic equation of the form :

Av2
xjxk

(x)+Bvxjxk
(x)+C = 0 with A =V 2

a 〈P
−1α,P−1α〉−〈P−1α,W 〉2

B = 2V 2
a 〈P

−1α,P−1β 〉−2〈P−1α,W 〉
(

〈P−1β ,W 〉−1
)

C =V 2
a 〈P

−1β ,P−1β 〉−
[

〈P−1β ,W 〉−1
]2

(17)

We remind that the algorithm exploits the fact that the value function, u, is strictly in-

creasing along the characteristics, in order to construct gradually the value function, u(x),
in function of the previous value function along the characteristic. To ensure that the

value of vxjxk
computed from (17) is a good approximation of the value function, u, at the

point x; the characteristic for the mesh point x needs to lie inside the simplex (x,xj,xk)
(cf Figure 3). Otherwise, the value vxjxk

for the point x is unacceptable, it should be

computed using another simplex.

To check that the characteristic for the mesh point x lies inside the simplex (x,xj,xk),
we need to compute an approximation of the characteristic direction. The characteristic

direction is Va
∇u
‖∇u‖ +W . Thus, we need to calculate the approximation of the gradient

of u. It can be approached with : ∇u(x) ≈ P−1
(

αvxjxk
(x)+β

)

. From the approxima-

tion of the characteristic at the point x, we are able to check that it lies inside the sim-

plex (x,xj,xk). For that purpose, we work in the new basis generated by the vectors Pj,



x

x j

Pk Pj

xk

x

x j

Pk Pj

xk

f (x,a)

f (x,a)

Figure 3. Example of acceptable (left) and unacceptable (right) approximations for f (x,a), where the upwind-

ing requirement is not satisfied and the update for the point x should be computed using others simplexes.

Pk. In this basis, the characteristic direction is (PT )−1 f (x,a). The upwind criterion is

equivalent to the condition that all the elements of the characteristic direction in the basis

(Pj,Pk) should be positive.

The drawback of this method is that it is based on the approximation and not the

exact characteristic direction. One element of the characteristic direction can be close to

zero. Due to the approximation, this element can be negative and the upwind criterion

will not be satisfied, even if the true characteristic direction satisfies the criterion. This

drawback can happen only when the characteristic direction is in the same direction as

one of the vectors of the basis Pj or Pk, i.e. vxjxk
can be computed based on either u(xj)

or u(xk). Finally, the value vxjxk
is computed as :

• if Pj and Pk are linearly independent and the upwind criteria is satisfied:

vxjxk
= solution of the quadratic equation (17)

• otherwise: vxjxk
= min(vxj

(x),vxk
(x)) with vxi

(x) = ‖x−xi‖

f (x,
x−xi
‖x−xi‖

)
+u(xi)

We have chosen to work with Eulerian discretization for our problem since the

step to compute the trial value comes to solve a quadratic equation. Contrary to Semi-

Lagrangian discretization, this step does not required iterative algorithms. However, for

other problems, the equation will not necessarily be quadratic with Eulerian discretiza-

tion, and it will require the computation of the roots of the non-linear equation with an

iterative algorithm.

We can construct the optimal trajectory by tracing backward, from the arrival point

to the initial point, and following the characteristic.

We propose to modify the speed of propagation. It is possible to slow down the

wavefront in parts of the environment that have to be avoided. Thus, the value function,

u, is increased, penalizing the passage through these areas.

2.4. Results

Our first test problem aims at emphasizing the impact of wind on trajectories. A model

for obstacles has also been implemented. From the point of view of airlines’ operations,

these obstacles could model some adverse weather conditions such as storms or turbu-

lences. In Figure 4, the optimal trajectories without wind (1.) and with wind (2.) have

been computed using the Ordered Upwind algorithm with the Eulerian discretization.

The obstacles are described by coloured iso-contours, red represents impassable obsta-

cles and the colour goes toward the blue as the importance of the obstacles decreases. In



the north part, wind is in the east direction and increases northwards. In the south part,

wind is in the west direction and increases southwards.

The trajectory taking into account the wind takes advantage of favourable winds.

The two trajectories do not behave in the same way to get around the obstacles. This is

attractive to get into account the wind to plan the aircraft trajectory. The wind-optimal

trajectory can be far from the optimal trajectory computed without wind.

Figure 4. Optimal trajectory with obstacles: 1. Without wind (green), 2. With wind (red)

The second test problem aims at demonstrating the benefits of flying along optimal

trajectories with a realistic wind model. We compare the travel time for the wind-optimal

route with that of the direct route. As in the first test problem, the wind-optimal trajectory

has been computed using the Ordered Upwind algorithm with the Eulerian discretization.

In this example, the average wind is 56 kt. We chose 390 kt for the True Airspeed of the

aircraft.

Figure 5 depicts both trajectories: the direct route (1.) and the wind-optimal trajec-

tory (2.). Table 1 lists the travel time computed for both trajectories taking into account

wind. For a flight time of about 25 minutes, the benefit of flying along the optimal route

is 28 seconds. It represents 1.9% of time saved for the trajectory.

Table 1. Travel times for direct and optimal route.

Travel time (seconds)

Direct route 1498

Optimal route 1470

2.5. Limits

In [7], Alton optimizes the trajectory of two robots without collision. He used the Fast

Marching algorithm since he worked with an isotropic problems. Instead of solving the

problem in R
2, he worked in the configuration space of several robots. For two robots,

the work space is R
4 − ∆, the (x,y) coordinates of both robots without the diagonal

∆ = {(x1,y1) = (x2,y2)}. By construction, the collision points between robots are ex-

cluded from the space. Computed trajectories are then ensured to be without collision.

Space dimension is the main drawback of these algorithms since the state space increases

exponentially with the number of mobiles involved in the problem. Resolution with more

than two robots becomes computationally intractable.



Figure 5. Trajectories: 1. Direct route (green), 2. Optimal route (red)

3. Future works : Multi-Agent Systems

Once the optimal trajectory of each aircraft is known (assuming the aircraft is the only

one flying), our aim is to modify this trajectory in order to minimize congestion while

remaining as close as possible to the optimal trajectories. Adaptive Multi-Agent Systems

(AMAS) allow designers to focus more on local interactions rather than on the overall

system [13]. From a set of local rules and cooperative behaviour of agents, Picard [14]

emphasizes the emergence of global order from local considerations. In our multi-agent

model, the agent-based trajectories are penalized or favoured close to the areas of con-

gestion. The multi-agent system produces a map of penalized or favoured areas per flight

taking into account wind and congestion. According to these maps, the wavefront is then

slowed down or speeded up to make flight take advantage of wind by avoiding the con-

gested areas. The main steps to compute the trajectories in the case of several aircraft

are:

1. Compute optimal trajectory for each aircraft independently;

2. Detect congested areas;

3. Build the maps of penalization through the MAS in order to minimize induced

congestion;

4. Compute again the optimal trajectories for each aircraft while penalizing or

favouring areas.

The main issue of our approach is to create a map for each aircraft that indexes the con-

gested areas. Each map is computed in order to further decrease the overall congestion

and, the travel time for each flight. The use of the Ordered Upwind method described

above allows us to generate a new optimal trajectory for each flight in relation to these

maps which prevent the airspace from congestion creation.

To minimize congested areas and travel time, the penalized areas are computed in a

coordinated manner between the flights. Here are the benefits of a multi-agent system.

Introduced agents are: flights and waypoints. Flights are in charge of assessing the be-

haviour of their own waypoint mainly from a flight time perspective. One waypoint in-

dexes one congested area for one flight. A waypoint agent is in charge of the filter aim-



ing at decreasing locally the congestion. Criticalities of the flights are the criteria which

lead waypoints of a common congested area to take coordinated decisions. These way-

points decisions aim at leading related flight out of the congested area. The choices of

a waypoint linked to a flight with high criticality will be more dominating in the MAS

evolution.

4. Conclusion

We presented in this paper a new model for the optimal path planning problem of a single

trajectory. We proposed an analytical solution of the discretized equation for the Ordered

Upwind algorithm. Thus, this model has the advantage to avoid an iterative algorithm for

the resolution of the equation. The results show the benefits of flying along optimal route

with respect to weather conditions.

The next steps of this work will focus on developing the coordination between tra-

jectories taking advantage of the knowledge of the optimal trajectories for each aircraft.

The multi-agent model will be tested on large scale and realistic examples.
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[13] J-P. Georgé, M-P. Gleizes, and V. Camps. Cooperation. In Self-organising Software, Natural Computing

Series, pages 193–226. Springer, 2011.

[14] G. Picard. Agent Model Instantiation to Collective Robotics in ADELFE . In Fifth Internatinal Workshop

on Engineering Societies in the Agents World, pages 209–221. Springer, octobre 2004.


