
HAL Id: hal-00935214
https://enac.hal.science/hal-00935214v1

Submitted on 22 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A heuristic approach based on shortest path problems
for integrated flight, aircraft, and passenger rescheduling

under disruptions
Nicolas Jozefowiez, Catherine Mancel, Felix Mora-Camino

To cite this version:
Nicolas Jozefowiez, Catherine Mancel, Felix Mora-Camino. A heuristic approach based on shortest
path problems for integrated flight, aircraft, and passenger rescheduling under disruptions. Journal of
the Operational Research Society, 2013, 64 (3), pp. 384-395. �10.1057/jors.2012.20�. �hal-00935214�

https://enac.hal.science/hal-00935214v1
https://hal.archives-ouvertes.fr

A heuristic approach based on shortest path problems for integrated

flight, aircraft and passenger rescheduling under disruptions

Nicolas Jozefowiez

CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France.

Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France.

nicolas.jozefowiez@laas.fr

Catherine Mancel, Félix Mora-Camino

École Nationale de l’Aviation Civile, 7 avenue Edouard Belin, 31055 Toulouse, France.

{catherie.mancel, felix.mora}@enac.fr

September 6, 2011

Abstract

In this paper, we present a heuristic method to solve an airline disruption management problem arising

from the ROADEF 2009 challenge. Disruptions perturb an initial flight plan such that some passengers

cannot start or conclude their planned trip. The developed algorithm considers passengers and aircraft

with the same priority by reassigning passengers and by creating a limited number of flights. The aim is

to minimize the cost induced for the airline by the recovery from the disruptions. The algorithm is tested

on real-life based data as well as on large scale instances and ranks among the best methods proposed

to the challenge in terms of quality, while being efficient in terms of computation time.

keywords: Air transport, planning, networks and graphs

1 Introduction

Airlines operate their fleet according to flight schedules, aircraft rotations, and crew rotations. Nevertheless

several kinds of disruptions happen quite frequently that prevent the airline from executing the expected

schedule. These diruptions may cause considerable costs for the companies (extra operations, extra catering,

lodging if necessary, ticket refund and financial compensation in case of cancellation or long delay).

Airlines are thus more and more interested in getting efficient systems allowing to return to normal

operations after disruptions in a short time and with a minimum induced cost. Since the mid-80’s, several

studies have been devoted to airline schedule recovery (see for instance the surveys by Filar et al. (2001),

Ball et al. (2007) and Clausen et al. (2010)). In particular, Clausen et al. (2010) provide detailed descriptions

and comparisons of the different approaches. It appears that the airline schedule recovery problem is usu-

ally decomposed according to the natural hierarchy of resources: the aircraft recovery problem (associated

with flight rescheduling), the crew recovery problem, and the passenger itinerary recovery problem. This

1

decomposition can lead to sub-optimal solutions particularly considering financial costs due to the delayed

passengers.

Most of the proposed methods for the aircraft recovery problem are based on network models where

nodes are associated to the flights. Teodorovic and Guberinic (1984) proposed the first branch-and-bound

algorithm. It was able to solve only small size problems. Since 1990, several heuristic methods to solve large

scale problems (Thengvall and G. Yu, 2001) have been proposed, ranging from greedy algorithms (Stojkovic

et al., 1998; Arguello et al., 1997) to column generation based methods (Clarke et al., 1997; Eggenberg et al.,

2007).

The crew recovery problem is mainly modelled as a set covering problem and is often solved by means of

branch-and-bound based methods (Wei et al., 1997; Lettovsky et al., 2000; Medard and Sawhney, 2007).

The passenger itinerary recovery problem is mainly modelled as a multi-commodity flow network problem

(Clarke, 2005; Barnhart et al., 2002). Relevant works addressing this problem consider it as part of an inte-

grated disruption management problem. For instance, Lettovsky (1997) presented the first fully integrated

approach for airline disruption management, although only parts of it were implemented. In his framework,

an aircraft recovery model, a crew recovery model, and a passenger flow model are simultaneously considered.

The proposed solution algorithms are based on Bender’s decomposition.

Bratu and Barhnart (2006) proposed two models that solve the integrated aircraft and crew recovery

problem while considering the impact on passenger delays in the objective function. The models have been

solved using OPL Studio in a simulation framework using data from domestic operations of a major US

airline.

In this paper, the problem is the so called disruption management problem for commercial aviation as

described by Palpant et al. (2009) in the context of the ROADEF 2009 challenge. In this context, we

consider the problem of rescheduling aircraft and passengers under disruptions. Several algorithms have

been proposed in the competition, see (Artigues et al., 2010) for an overview of these solution approaches.

Methods used in the challenge include a large neighborhood search heuristic (Bisaillon et al., 2009) and a

mathematical programming approach using statistical analysis (Acuna Agost et al., 2009).

The main contribution of this paper is the proposition of a fast and efficient heuristic method for the

problem. The problem is stated in Section 2. Section 3 describes the heuristic method. Computational

tests are reported in Section 4. Finally, conclusions are drawn and future research directions are discussed

in Section 5.

2 Problem description

Here we consider the integrated problem of aircraft rotation and passenger itinerary recovery as defined in

(Palpant et al., 2009). All the parameters introduced hereafter are summarized in appendix A.

2.1 Planning horizon and recovery time window

The data are defined over a planning horizon. However, the disruptions occur and modifications can only be

made during a part of the planning horizon called the recovery time window RTW. The start (respectively,

the end) of the recovery time window is denoted RTWs (respectively, RTWe). The recovery time window is

divided into smaller time windows equal to one hour, denoted h ⊆ RTW.

2

2.2 Airport

The airports form a set A. For each airport a ∈ A and for each time window h ⊆ RTW, the value clha is the

maximum number of landings that can occur during the time window h at airport a and ctha the maximum

number of takeoffs. The capacities are hard constraints. For each pair a1, a2 ∈ A, da1a2
is the distance

between a1 and a2.

2.3 Aircraft

The aircraft fleet forms a set P . An aircraft p ∈ P has a maximum capacity in terms of seats cmax
p . In the

ROADEF 2009 challenge, three capacities, which correspond to the number of seats in the first class, the

business class, and the economic class respectively, were defined. However, to avoid complications in the

explanations, only one class can be considered without loss of generality.

An aircraft p ∈ P performs a rotation which is a sequence σp of flight legs (or legs) starting from an

origin airport Op. The ith leg in the rotation is σp(i) and |σp| is the number of legs in the rotation. The

leg σp(i) is defined by an origin airport σo
p(i), a departure time σd

p(i), a destination airport σf
p (i), an arrival

time σa
p(i), and a remaining seat capacity σc

p(i). An aircraft p cannot operate flight legs that are longer than

its maximum range rmax
p . To be correct, σp must respect the following constraints:

1. The rotation σp must start at Op, i.e., σ
o
p(1) = Op.

2. An aircraft pmust respect a turnaround duration tr between two consecutive legs, i.e., ∀i ∈ [1, |σp|[, σ
a
p(i)+

tr ≤ σd
p(i+ 1).

3. The rotation must be connected, i.e., ∀i ∈ [1, |σp|[, σ
f
p (i) = σo

p(i+ 1).

Alterations can be made only on the part of the rotation σp of an aircraft p taking place during the

recovery time window. To take this into account in our algorithm seamlessly, we need to redefine Op and to

define trp the earliest possible takeoff time for each p ∈ P . If the rotation σp of an aircraft p is empty or starts

after RTWs, then Op is unchanged and trp is equal to RTWs. Otherwise, let k be the index of the last leg in

σp taking off before the start of the recovery time window (i.e. ∄k′ ∈ [k + 1, |σp|], σ
d
p(k) < σd

p(k
′) < RTWs).

Then, Op is equal to σf
p (k) and trp to max(RTWs, σ

a
p(k)+tr). In the remaining part of the paper, σp will refer

to the sub-rotation σp(k+1, |σp|), which may be empty if the initial rotation is over before the beginning of

the recovery time window.

For a subset Pm ⊆ P , each aircraft p ∈ Pm must undergo a maintenance during the recovery time window.

For each aircraft, the maintenance is defined by a maintenance airport, a duration, and a maximum range

limiting the flying time allowed before the maintenance. Checking this constraint is straightforward and it

will not be discussed in the paper. A maintenance can be treated seamlessly as a leg in σp.

We set Σ = {σp|p ∈ P}.

2.4 Groups of passengers

The groups of passengers form a set G. A group g ∈ G is defined by a size sg, an origin airport Og, a ticket

price pg, and a status wg which indicates if the group is on an inbound or an outbound trip. A group g ∈ G

follows an itinerary γg which is a sequence of legs not necessarily belonging to the same rotation. The ith leg

3

in the itinerary is γg(i) and |γg| is the number of legs in the itinerary. The leg γp(i) is defined by an origin

airport γo
p(i), a departure time γd

p(i), a destination airport γf
p (i), and an arrival time γa

p (i). To be correct,

γg must respect the following constraints:

1. The itinerary γp must start at Og, i.e., γ
o
g(1) = Og.

2. A group g must respect a connection delay cd between two consecutive legs, i.e., ∀i ∈ [1, |γg|[, γ
a
g (i) +

cd ≤ γd
g (i+ 1).

3. The itinerary must be connected, i.e, ∀i ∈ [1, |γg|[, γ
f
g (i) = γo

g(i+ 1).

As with the aircraft, the fact that only the part of an itinerary γg taking place inside the recovery time

window can be modified leads us to redefine Og if the itinerary starts before the recovery time window. For

a group g such that γd
g (1) < RTWs, let k be the index of the last leg in γg happening before the start of the

recovery time window (i.e., ∄k′ ∈ [k + 1, |γg|], γ
d
g (k) < γd

g (k
′) < RTWs). Then, Og is set to γf

g (k). In the

remaining part of the paper, γg will refer to the sub-itinerary γg(k + 1, |γg|).

For each group g, we also associate an earliest possible time of departure trg = γd
g (1), a destination airport

Dg = γf
g (|γg|), and a latest possible time of arrival tdg = γa

g (|γg|) +ml with ml a constant representing the

maximum allowed lateness.

We set Γ = {γg|g ∈ G}.

2.5 Sets of disruptions

The sets of disruptions are the following:

• set of flight delays D: a delay d ∈ D is defined by a triplet (p, i, t) ∈ P × N+ × N+ with p the affected

aircraft, i the index of the affected leg in σp, and t the delay in minutes;

• set of flight cancellations C: a cancellation c ∈ C is defined by a couple (p, i) ∈ P × N+ with p the

affected aircraft and i the index of the affected leg in σp;

• set of aircraft breakdowns B: a breakdown b ∈ B is defined by a triplet (p, s, e) ∈ P ×N+ ×N+ with p

the affected aircraft, s the start time of the breakdown, and e the end time of the breakdown;

• set of airport capacity reductions R: a reduction r ∈ R is defined by a quadruplet (a, h, z, c) ∈

A × RTW × {t, l} × N+ with a the affected airport, h the time window during which the reduction

happens, z the affected activity (takeoff t or landing l), and c the new capacity.

2.6 The problem

Given an initial plan S0 = (A,P,Σ0, G0,Γ0) and sets of disruptions (D, C,B,R) the problem consists in

providing an alternate feasible plan Sf = (A,P,Σf , Gf ,Γf) by modifying aircraft rotations and passenger

itineraries during the recovery time window.

The precise objective function used for the ROADEF 2009 challenge is too complex to be completely

expressed here (see (Artigues et al., 2010) for a detailed description). It is also not trivial to compute. As a

consequence, in the heuristic method which is described in the next section, it is not explicitly computed, but

4

the following soft constraints, that contribute to a penalty in the objective function if they are not fulfilled,

are considered:

• As much as possible, passengers shouldn’t be delayed or cancelled.

• As much as possible, the maximum delay for passengers at their destination should not exceed 18 hours

for domestic and continental flights, and 36 hours for intercontinental flights.

• As much as possible, passengers shouldn’t be downgraded to a lower cabin class.

• As much as possible, flights should not be delayed or cancelled.

• As much as possible, by the end of the recovery time window each aircraft should be at its initially

planned position.

3 The NCF heuristic method

Our heuristic, called New Connections and Flights heuristic method (NCF), works in three phases. During

the first phase (Section 3.1), the disruptions are integrated into the initial plan S0 = (A,P,Σ0, G0,Γ0).

They are treated in a straightforward fashion in order to return as fast as possible to a new feasible plan

S1 = (A,P,Σ1, G0,Γ1). During this phase, legs of some aircraft rotations may be removed to respect rotation

connectivity or airport capacities. If a leg σ is removed, the itineraries of the groups g ∈ G0 such that σ ∈ γg

are cancelled. An itinerary can also be cancelled if a change in the departure and arrival times of its legs

violates the connection delay. Cancelling the itinerary of a group g means that γg is set to ∅. If g had in fact

started its trip before the beginning of the recovery time window, we still consider its itinerary to be empty

but its status wg is set to truncated. At the end of this phase, we build the set Gp = {g ∈ G0|γg = ∅}. The

goal of the following phases is to find itineraries for the groups g ∈ Gp.

The goal of the second phase (Section 3.2) is to reassign to the existing set of rotations Σ1 as many

passenger groups g ∈ Gp as possible. This phase produces a new plan S2 = (A,P,Σ1, G1,Γ2). During this

phase, G0 may be modified as some groups may be split in order to respect the aircraft seat capacities.

IfGp is not empty at the end of the second phase, we try to extend the aircraft rotations to build itineraries

for the groups g ∈ Gp in the third phase (Section 3.3). This step produces a plan S3 = (A,P,Σ2, G2,Γ3)

which is returned as the solution of the heuristic algorithm.

3.1 Phase 1: Integration of the disruptions

Starting from the initial plan, the set of disruptions are considered sequentially. This phase is composed

of the following steps: i) cancelled flights; ii) delayed flights; iii) aircraft breakdowns; iv) airport capacity

drops; v) airport capacity overflow repair; vi) connectivity repair.

Cancelled flights For each c = (p, i) ∈ C, we simply remove σp(i) from σp. The itineraries of the groups

g ∈ G0 \Gp such that σp(i) ∈ γg are cancelled.

5

Algorithm 1 Delay propagation.

σd
p(i)← σd

p(i) + d
σa
p(i)← σa

p(i) + d

while i < |σp| and σa
p(i) + tr > σd

p(i+ 1) do

d← σa
p(i) + tr− σd

p(i+ 1)
i← i+ 1
σd
p(i)← σd

p(i) + d
σa
p(i)← σa

p(i) + d
end while

Delayed flights For each d = (p, i, t) ∈ D, Algorithm 1 is used to propagate the delay on σp(i) to the

following legs in σp. If a leg σ is modified by Algorithm 1, we check if the itineraries of the groups g ∈ G0\Gp

such that σ ∈ γg still respect the connection delay and cancel them if necessary.

Aircraft breakdowns For each b = (p, s, e) ∈ B, the first step is to cancel the legs in σp which overlap

with the breakdown. The second step consists in inserting the breakdown in σp as a fictitious leg. Let i be

the index of the leg σp(i) such that ∄j, σa
p(i) < σa

p(j) < s. The breakdown is then considered as a new leg

σp(i + 1) with σo
p(i + 1) = σf

p (i), σ
a
p(i + 1) = s, σf

p (i + 1) = σa
p(i), σ

d
p(i + 1) = e. In the algorithm, the

breakdown is considered as a standard leg with the exceptions that its origin airport and its arrival airport

are dynamically adjusted to reflect the airport reached by the leg directly preceding the breakdown and that

no turnaround delay is required. In the remaining part of the paper, this special case will not be treated in

order not to obfuscate the explanations but these points are considered in the implementation.

Airport capacity reductions For each r = (a, h, t, c) ∈ R, we set ctha to c.

Airport capacity overflow repair The following procedure is used to return to a solution respecting

these capacities. The airports are sequentially considered. For each airport a ∈ A, we consider the time

windows h ∈ RTW chronologically. For a time window h, if the number of landings is greater than clha , a leg

of an aircraft landing at a during h must be canceled. To choose the leg to cancel, we consider the following

rules. We cancel the leg of an aircraft p ∈ P \Pm that lands at a during h such that there is a delayed flight

d ∈ D operated by p. If there is no such aircraft, we select an aircraft p ∈ Pm that has suffered from a delay.

If there is still no such aircraft, we select a non delayed aircraft landing at a during h. This is iterated until

there is no more landing capacity overflow. The same process is used if there is a takeoff capacity overflow.

Connectivity repair The previous steps can lead to rotations that do not respect the connectivity con-

straints. Algorithm 2 is used to repair the connectivity of the rotation of an aircraft p ∈ P .

In a first phase, we check if there is a connection problem between Op and the departure airport of the

first leg of the rotation. If there is a problem, a sub-rotation connecting Op and σo
p(1) in a time window

[trp, σ
d
p(1) − tr] is searched using Algorithm 6 (see section 3.3.2). If a sub-rotation is not found, the first leg

is cancelled and the process is iterated; otherwise the sub-rotation is inserted at the head of σp and the

algorithm moves to the second phase.

During the second phase, the connectivity between all couples of legs σp(i) and σp(i+1) with 1 ≤ i < |σp|

is checked. Starting with i = 1, the following process is iterated until i = |σp|. If σ
f
p (i) = σo

p(i+1), we move

6

Algorithm 2 Connectivity repair algorithm.

– First phase
if σo

p(1) 6= Op then

while |σp| 6= 0 and σo
p(1) 6= Op do

σ ← search sub-rotation(p, Op, t
r
p, σ

o
p(1), σ

d
p(1)− tr) (Algorithm 6)

if |σ| 6= 0 then

σp ← σ.σp

i← |σ|+ 1
else

Cancel σp(1)
end if

end while

else

i← 1
end if

– Second phase
while |σp| 6= 0 and i < |σp| do
if σf

p (i) 6= σo
p(i+ 1) then

σ ← search sub-rotation(p, σf
p (i), σ

a
p(i) + tr, σo

p(i+ 1), σd
p(i+ 1)− tr) (Algorithm 6)

if |σ| 6= 0 then

σp ← σp(1, i).σ.σp(i+ 1, |σp|)
i← i+ |σ|+ 1

else

if σp(i+ 1) is not a maintenance then

Cancel σp(i+ 1)
else

Cancel σp(i)
if i 6= 1 then

i← i− 1
end if

end if

end if

else

i← i+ 1
end if

end while

7

to the next link in the rotation. Otherwise, a sub-rotation connecting σf
p (i) and σo

p(i+ 1) in a time window

[σa
p(i), σ

d
p(i + 1) − tr] is searched using Algorithm 6. If a sub-rotation is found, it is inserted between σp(i)

and σp(i+ 1) and i is modified such that σp(i+ 1) is the next leg to be considered, otherwise two cases can

happen. The first case occurs if σf
p (i+ 1) is not a maintenance, then σp(i+ 1) is cancelled and the process

is iterated. The second case arises when σf
p (i+1) is a maintenance. Therefore σp(i+1) cannot be cancelled

and the leg σp(i) is cancelled instead. The algorithm moves back to σp(i− 1).

3.2 Phase 2: Passenger assignment

In this phase, we try to assign groups of passengers from Gp to existing flight legs by means of the assignment

heuristic presented in 3.2.1. The search for an itinerary for a given group of passengers is modelled as a

shortest path problem solved by Algorithm 4 described in 3.2.2.

3.2.1 Assignment heuristic

First, Gp is divided into three subsets:

1. Gt = {g ∈ Gp | wg = truncated},

2. Go = {g ∈ Gp | wg = outbound},

3. Gi = {g ∈ Gp | wg = inbound}.

The subset Gt has a higher priority than Go and Gi because the itineraries of passengers from Gt are started

but not completed and these passengers cost more to compensate. Go has a higher priority than Gi.

Then, the groups are considered as shown in Algorithm 3 according to the priority of the sets and to a

score fg = sg × pg (∀g ∈ Gp). For each group g, an itinerary from Og to Dg is searched in the time window

[trg, t
d
g] by means of Algorithm 4. If an itinerary is found, the group is assigned to the new itinerary. If

the seat capacity of the itinerary is strictly smaller than sg, g is split into two, with the remaining of the

passengers forming a new group which is inserted in Gp.

3.2.2 Passenger itinerary search

Algorithm 4 inputs are: i) an origin airport O; ii) a ready time tr; iii) a destination airport D; iv) a due

time td. The algorithm searches for an itinerary from O to D in the time window [tr, td]. If such an itinerary

exists, the algorithm returns the one being able to transport the greatest number of passengers, using the

time of arrival at D to break ties.

The algorithm works on a dynamically built graph in which a node is defined by a label (d, γ, t, c) with d

an airport, γ an itinerary from O to d, t the time of arrival at d, and c the maximum number of passengers

that can be transported. The best solution is stored as a triplet: γ∗ the itinerary from O to D, t∗ the time

of arrival at D, and c∗ the maximum number of passengers that can be transported.

At each step, the algorithm selects the node n = (d, γ, t, c) with the smallest t. The capacity is used

to break ties. If the airport reached at this node is D, it is tested as a candidate for the best solution.

Otherwise, we consider the set of aircraft leaving D after t plus the time needed to allow the connection.

Each aircraft leads to the creation of a new node. Not all the nodes are kept as a dominance relation exists

8

Algorithm 3 Assignment of passengers to existing rotations.

G1 ← G0

for Gx = Gt, Go, Gi do

while Gx 6= ∅ do
g ← g ∈ Gx such that ∄g′ ∈ Gx, pgsg < pg′sg′

Gx ← Gx \ {g}
γ ← search itinerary(Og, t

r
g, Dg, t

d
g) (Algorithm 4)

if |γ| 6= 0 then

if min1≤i≤|γ| γ
c(i) < sg then

g′ ← g
sg ← min1≤i≤|γ| γ

c(i)
sg′ ← sg −min1≤i≤|γ| γ

c(i)
γg′ ← ∅
G1 ← G1 ∪ {g

′}
Gx ← Gx ∪ {g

′}
end if

γg ← γ
end if

end while

end for

between two nodes. A node n1 = (d1, p1, t1, c1) dominates another node n2 = (d2, p2, t2, c2) if the three

following criteria are verified: i) d1 = d2; ii) t1 ≤ t2; iii) c1 ≥ c2.

3.3 Phase 3 : Flight leg creation

In this step, the heuristic described in 3.3.1 tries to insert new sub-rotations to existing aircraft rotations to

allow the transportation of passengers from Gp. The heuristic uses the shortest path algorithm presented in

3.3.2 to build the new sub-rotations.

3.3.1 Creation heuristic

First, for each airport pair (O,D), a meta-group is created. A meta-group m ⊆ Gp associated to a pair

(Om, Dm) is the set of the groups of passengers in Gp wishing to go from Om to Dm. The meta-group m is

defined by its size sm =
∑

g∈m sg, its ready time trm = maxg∈m trg, and its due time tdm = maxg∈m tdg. The

meta-groups form a set M .

Algorithm 5 is applied to each m ∈ M starting with the largest meta-group until all the meta-groups

have been considered. In this algorithm, the aircraft p ∈ P are considered one after the other. We investigate

the possibility to include a new sub-rotation before σp(1) if Op = Om and trp ≤ trm or between two legs σp(i)

and σp(i+1) if σf
p (i) = Om and σa

p(i) + tr ≥ trm. A return trip from Dm to Om may be necessary to respect

the connectivity constraint of σp. The search for the sub-rotations is done by Algorithm 6. If a sub-rotation

is found, it is inserted in σp and as many passengers as possible from m are assigned to it. The process is

iterated until an itinerary has been found or until all the possibilities have been exhausted.

9

Algorithm 4 Passenger itinerary search.

γ∗ ← ∅, t∗ ← +∞, c∗ ← 0
L← {(O, ∅, tr,+∞)}
while L 6= ∅ do

n← n = (d, γ, tr, c) ∈ L such that ∄n′ = (d′, γ′, t′r, c
′) ∈ L, (t′r < tr) or ((t

′
r = tr) and (c′ > c))

L← L \ {n}
if (d = D) and ((c > c∗) or ((c = c∗) and (t < t∗)) then
γ∗ ← γ, t∗ ← t, c∗ ← c

else

for all p ∈ P do

for all i ∈ [1, |σp|] such that σo
p(i) = d and t+ cd ≤ σd

p(i) do
if σa

p(i) < td then

na ← (σf
p (i), γ.σp(i), σ

a
p(i),min(σc

p(i), c))
for all n′ ∈ L do

if na dominates n′ then

L← L \ {n′}
end if

end for

if ∄n′ ∈ L such that n′ dominates na then

L← L ∪ {na}
end if

end if

end for

end for

end if

end while

3.3.2 New sub-rotation search

Algorithm 6 inputs are: i) an origin airport O; ii) a ready time tr; iii) a destination airport D; iv) a due

time td; v) an aircraft p. The algorithm returns a new rotation from O to D minimizing the time of arrival

t∗ at D. Note that such a rotation may not exist. The algorithm follows closely the Dijkstra algorithm.

The algorithm works on the graph (A,E) with E = {(a1, a2) ∈ A×A|da1a2
≤ rmax

p }. For a node a ∈ A,

πa is the predecessor of a and etaa the estimated time of arrival at a.

Each e = (a1, a2) ∈ E has a weight we = fp
e + tr + se with fp

e the flight time for p from a1 to a2 and

se the waiting time at airport a1 before departure. This waiting time is induced by the need to respect the

airport landing and takeoff capacities. This waiting time is computed dynamically by the algorithm during

the relaxation phase of an arc (a, a′) described in Algorithm 7. The estimated time of departure from a is

etd and the estimated time of arrival at a′ is eta. We define etdh the corresponding time window h ∈ RTW

and etdr the remaining time until the end of h. The same information is defined for eta. For each h ∈ RTW

and an airport a, #lh
a is the number of scheduled landings at a during h and #th

a the number of takeoffs.

4 Computational results

The algorithm was coded in C and was run on an Intel Core 2 Duo E6550 2.33Ghz CPU.

It was tested on instances provided by Amadeus and it was evaluated with the objective function used

10

Algorithm 5 Itinerary creation for a meta-group.

σ ← ∅
for all p ∈ P while σ = ∅ do

if Op = Om then

i← 0
σ ← search sub-rotation(Om, trm, Dm, min(tdm, σd

p(1)− tr, p) (Algorithm 6)
if σp 6= ∅ and σ 6= ∅ then
σr ← search sub-rotation(Dm, σa(|σ|) + tr, Om, σd

p(1)− tr, p)
if σr = ∅ then
σ ← ∅

end if

end if

end if

if σ = ∅ then
for all i ∈ [1, |σp|] such that σf

p (i) = Om and trm ≤ σd
p(i) + tr ≤ tdm while σ = ∅ do

σ ← search sub-rotation(Om, σd
p(i) + tr, Dm, min(tdm, σd

p(i+ 1)− tr, p)) (Algorithm 6)
if σ 6= ∅ and i 6= |σp| then
σr ← search sub-rotation(Dm, σa(|σ|) + tr, Om, σd

p(i+ 1)− tr, p) (Algorithm 6)
if σr = ∅ then

σ ← ∅
end if

end if

end for

end if

end for

if σ 6= ∅ then
c← cmax

p

while c 6= 0 and m 6= ∅ do
g ← g ∈ m such that ∄g′ ∈ m, sg′ > sg
m← m \ {g}
Gp ← Gp \ {g}
if sg ≤ c then

γg ← σ
c← c− sg

else

g′ ← g
sg ← c
γg ← σ
sg′ ← sg′ − c
m← m ∪ {g′}
M ←M ∪ {m}
c← 0

end if

end while

σp ← σp(1, i).σ.σ
r.σp(i+ 1, |σp|)

end if

11

Algorithm 6 Sub-rotation search.

for all a ∈ A do

πa ← nil
etaa ← +∞

end for

etaO ← tr
Q← A \ {O}
repeat

Extract from Q the node a with the smallest etaa
if a 6= D then

for all a′ ∈ A adjacent to a do

Perform a relaxation on (a, a′) (Algorithm 7)
end for

end if

until a = D

Algorithm 7 Relaxation between two nodes a and a′.

etd← etaa + tr
eta← etd+ fp

aa′

while (eta ≤ td) and ((#tetdh

a = ctetdh

a) or (#letah

a′ = cletah

a)) do
if #tetdh

a = ctetdh

a then

eta← eta+ etdr
etd← etd+ etdr

else

eta← eta+ etar
etd← etd+ etar

end if

end while

if etd ≤ td and eta < etaa′ then

πa′ ← a
etaa′ ← eta

end if

for the ROADEF’09 challenge, also provided by Amadeus as a black box executable. They were divided into

three sets (A, B, and X). Globally, the instances comprise a maximum of 2000 flights connecting 150 airports

for a recovery period of at most 3 days. Detailed information concerning the number of flights, the number

of aircraft, the number of airports, the number of passenger itineraries, the number of disrupted flights, the

number of disrupted aircraft, the number of disrupted airports and the length of the recovery period are

provided in Tables 1–3.

Computational times were limited to 10 minutes on a reference computer (our test computer is slightly

slower than the reference computer). Table 4 gives the average score of the participants of the ROADEF’09

challenge obtained with the same objective function. This average score is computed on all instances of

set B and on instances of set X with the exception of X01, X02, X03, and X04 instances (because most of

participants obtained no solution on these instances). To compute the average score, normalized scores were

used. Let z(M, I) denote the objective function value obtained by Method M on Instance I. Let zb(I) and

zw(I) denote the best and worst objective function values found by all methods on instance I, respectively.

The normalized score obtained by Method M on Instance I is given by (zw(I)− z(M, I))/(zw(I)− zb(I)).

12

Table 1: Instance set A characteristics.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
#flights 608 608 608 608 608 608 608 608 608 608
#aircraft 85 85 85 85 85 85 85 85 85 85
#airports 35 35 35 35 35 35 35 35 35 35
#itineraries 1943 1943 1943 1943 3959 1872 1872 1872 1872 3773
#disr/flight 63 107 83 41 0 63 107 83 41 0
#disr/aircraft 0 0 1 0 0 0 0 1 0 0
#disr/airport 0 0 0 2 35 0 0 0 2 35
rec period 1 1 1 1 2 1 1 1 1 2

Table 2: Instance set B characteristics.

B1 B2 B3 B4 B5
#flights 1422 1422 1422 1422 1422
#aircraft 255 255 255 255 255
#airports 44 44 44 44 44
#itineraries 11214 11214 11214 11214 11214
#disr/flight 229 254 228 229 0
#disr/aircraft 0 0 1 0 0
#disr/airport 0 0 0 1 2
rec period 2 2 2 2 2

B6 B7 B8 B9 B10
#flights 1422 1422 1422 1422 1422
#aircraft 255 255 255 255 255
#airports 44 44 44 44 44
#itineraries 11565 11565 11565 11565 11565
#disr/flight 229 254 228 229 0
#disr/aircraft 0 0 1 0 0
#disr/airport 0 0 0 1 2
rec period 2 2 2 2 2

On this subset of instances, we obtain the second best score behind Bisaillon et al. However, if the instances

X01, X02, X03, X04 are considered, NCF obtains a better average score (93.47) than Bisaillon et al. (91.46),

which is the only team reporting results for these instances. Globally, it can be concluded that our method

provides very good results for these instances.

Tables 5–7 report detailed results on all instances. It provides our results and the computational times

used to obtain them, as well as the results obtained by the three best participant teams except for set A for

which their final results are unknown. Results in bold font indicate that it is the best found solution, INF

indicates that no result was returned in the time limit. On instances of sets B and X, NCF found 13 best

found solutions out of 22 instances; in comparison, Bisaillon et al. found one out of 22, Hanafi et al. found

6 out of 22. It is another indicator of the quality of the results we obtain.

In order to compare ourselves to the other eight methods submitted to the challenge, Figures 1-3 indicate

for the instances of sets B, XA, XB the worst and the best obtained scores, as well as the median score and

13

Table 3: Instance set X characteristics.

X01 X02 X03 X04 XA01 XA02
#flights 2178 2178 2178 2178 608 608
#aircraft 618 618 618 618 85 85
#airports 168 168 168 168 35 35
#itineraries 28308 28308 29151 29151 1943 3959
#disr/flight 0 0 0 0 82 0
#disr/aircraft 1 1 1 1 3 3
#disr/airport 1 0 1 0 0 35
rec period 3 3 3 3 2 2

XA03 XA04 XB01 XB02 XB03 XB04
#flights 608 608 1422 1422 1422 1422
#aircraft 85 85 255 255 255 255
#airports 35 35 44 44 44 44
#itineraries 1872 3773 11214 11214 11565 11565
#disr/flight 82 0 228 0 227 0
#disr/aircraft 3 3 3 1 4 3
#disr/airport 0 35 0 2 0 2
rec period 2 2 2 2 2 2

Table 4: Final scores for participant teams.

Team Average score (%)
Bisaillon, Cordeau, 95.80
Laporte, Pasin
Jozefowiez, Mancel, 92.87
Mora-Camino
Hanafi, Wilbaut, 92.63
Mansi, Clautiaux
Acuna-Agost, Michelon, 74.26
Feillet, Gueye
Eggermont, Firat, 72.00
Hurkens, Modelski
Darlay, Kronek, 70.62
Schrenk, Zaourar
Peekstok, Kuipers 70.31
Dickson, Smith, Li 42.02
Eggenberg, Salani 20.43

the score of NCF. Note that for instances XA and XB, as not all competitors found a solution during the

allowed time for each instance, the charts indicate for each instance the number of competitors that found a

solution. We do not provide a chart for instances X01 to X04 because only the method proposed by Bisaillon

et al. (2009) and NCF found a solution.

On set B, it appears that for the two instances where we did not obtain the best results (B5 and B6), we

are not far from the median and well ahead of the worst solutions. In these instances, the only disruptions

14

Figure 1: Comparison of all the methods on the instance set B.

Figure 2: Comparison of all the methods on the instance set XA.

15

Table 5: Results on set A.

Instances A01 A02 A03 A04 A05
NCF 150095.70 377992.90 473992.15 2520586.00 13640667.40
Time < 1s < 1s < 1s < 1s 25s

Instances A06 A07 A08 A09 A10
NCF 111540.50 623236.80 997137.80 6163295.90 23840247.85
Time < 1s < 1s < 1s < 1s 20s

Table 6: Results on set B.

Instances B01 B02 B03 B04 B05
NCF 971182.50 1220708.30 1007565.70 1101394.80 25302036.95
Time 28s 39s 28s 30s 2m06s

Bisaillon et al. 983731,75 1522452.75 1031825.30 1192519.20 15639190.80
Hanafi et al. 5813896.95 9950888.70 5569623.95 5775277.70 13139974.30

Acuna-Agost et al. 1540123.55 2656393.25 1572754.95 1629491.90 14042563.85
Instances B06 B07 B08 B09 B10
NCF 3218000.10 5039744.20 3509318.00 3967344.70 59289841.80
Time 24s 34s 24s 25s 1m21s

Bisaillon et al. 3789254.05 5488693.00 4069557.35 5906239.15 52355192.80
Hanafi et al. 9095248.10 19144460.30 10099607.00 10176173.55 34523605.00

Acuna-Agost et al. 4926204.05 8381142.30 5092952.60 5414178.30 40080949.40

are large airport capacity reductions. More precisely, it is the closing of the two main airports (which are

hubs) during most of the recovery time window. It leads to a large number of passengers who have to be

rerouted. The average results of our method on these 2 instances can be explained as follows. NCF modifies

as little as possible the initial plan in terms of aircraft rotations and passenger itineraries. We mean that

NCF never modifies an itinerary from the set of passengers G \Gp. Therefore, passengers having these hubs

as destination airport and supposed to reach them during their capacity disruption, could not be flown there,

even after the end of the disruption. Indeed, the existing flights that have not been affected by any disruption

may already be full and thus will not be able to fly the stranded passengers. Whereas other methods, like

Bisaillon et al. (2009) for instance, allow modification of any passenger itinerary.

The same conclusions can be reached for the instances XA and XB which are built on the same structure

as the instances A and B, i.e. they have the same size in terms of number of aircraft, number of passengers

and number of airports, and they have the same kind of perturbations, but in a larger scale.

Our method largely outperforms the one by Bisaillon et al. (2009) on the instances X except for X04, their

algorithm being the only one to report results on these. Unlike instances XA and XB, the main difficulty of

instances X01 to X04 does not come from a large number of disruptions but from the size of the instances.

Therefore, the graph to search for a new itinerary among the existing flights (NCF’s phase 2) can be quite

large. However, our method following simple and deterministic rules is able to treat all the passengers while

Bisaillon et al’s method relies on stochastic searches and must iterate this search. We believe that the size of

the instances prevents Bisaillon et al’s method to perform enough searches to converge. Concerning instance

X04, given the size of the instance, the cost associated to not being able to fly a group of passengers to

16

Table 7: Results on set X.

Instances XA01 XA02 XA03 XA04
NCF 150857.60 4787273.45 404964.20 9352557.15
Time < 1s 25s < 1s 20s

Bisaillon et al. 462571.10 2238311.75 959080.90 5480962.75
Hanafi et al. 116195.20 1475322.10 285287.05 4112262.60

Acuna-Agost et al. 214321.95 2010576.25 433172.00 6575537.15
Instances XB01 XB02 XB03 XB04
NCF 1194006.65 24885515.20 4251062.90 57588009.55
Time 29s 2m06s 25s 1m19s

Bisaillon et al. 1352823.05 17064421.50 6463354.30 53543381.45
Hanafi et al. 5985772.05 12716512.00 11124244.55 34331225.80

Acuna-Agost et al. INF INF INF INF
Instances X01 X02 X03 X04
NCF 283033.85 135872.00 1835571.95 590774.35
Time 3m21s 29s 3m50s 23s

Bisaillon et al. 1116142.85 806011.20 2682125.00 485904.75

Hanafi et al. INF INF INF INF
Acuna-Agost et al. INF INF INF INF

its destination, and the size of the groups, a difference of 100 000 in the solution cost may not be relevant.

However, as the details of the solutions of the other teams are unknown, it is not possible to investigate the

variation in more details.

Finally, another advantage of NCF is its efficiency in terms of computational time. On a majority of

instances, it does not pass over one minute, and it never passes over 4 minutes, remaining far below the 10

minute time limit imposed by the challenge.

5 Conclusion

We have proposed a simple and efficient heuristic method for the integrated flight, aircraft and passenger

rescheduling problem. This work was done in the context of the ROADEF 2009 challenge. This paper shows

the quality of the algorithm. When the complete set of instances is considered, the method obtains the

best average score.The NCF heuristic also obtains the best found solution on more than half the instances.

Additionally, it is worthy to underline the speed of the NCF method. This work is continued in a collaboration

with Amadeus.

Acknowledgements

Thanks are due to the referees for their valuable comments.

References

Acuna Agost, R., D. Feillet, P. Michelon, S. Gueye. 2009. Rescheduling flights, aircraft and

17

Figure 3: Comparison of all the methods on the instance set XB.

passengers simultaneously under disrupted operations - a mathematical programming approach

based on statistical analysis. Submitted to the Anna Valicek Medal 2009, available online at

http://www.agifors.org/award/AVMedal-history.htm.

Arguello, M.F., J.F. Bard, G. Yu. 1997. A grasp for aircraft routing in response to grounding and delays.

Journal of Combinatorial Optimization 5 211–228.

Artigues, C., E. Bourreau, M. Afsar, O. Briant, M. Boudia, S. Gabteni, O. Gerber, F. Laburthe, R. Layouni.

2010. Disruption management for commercial airlines : overview of methods and official results for the

roadef 2009 challenge. European Journal of Industrial Engineering . (to appear)

Ball, M., C. Banrhart, G. L. Nemhauser, A. Odoni. 2007. Handbooks in Operations Research and Management

Science, vol. 14, chap. Air transportation: Irregular operations and control. Elsevier, 1–67.

Barnhart, C., T. Kniker, M. Lohatepanont. 2002. Itinerary-based airline fleet assignment. Transportation

Science 36 199–217.

Bisaillon, S., J. F. Cordeau, G. Laporte, F. Pasin. 2009. A large neighborhood search heuristic for the aircraft

and passenger recovery problem. Tech. Rep. CIRRELT-2009-42, CIRRELT, Montreal, Quebec, Canada.

Bratu, S., C. Barhnart. 2006. Flight operations recovery: new approaches considering passenger recovery.

Journal of Scheduling 9 279–298.

Clarke, L., E. Johnson, G. L. Nemhauser, Z. Zhu. 1997. The aircraft rotation problem. Annals of Operations

Research 69 33–46.

Clarke, M. 2005. Passenger reaccommodation a higher level of customer service. Airline Group of the

18

International Federation of Operational Research Societies (AGIFORS) Airline Operations Study Group

Meeting .

Clausen, J., A. Larsen, J. Larsen, N. J. Rezanova. 2010. Disruption management in the airline industry -

concepts, models and methods. Computers and Operations Research 37 809–821.

Eggenberg, N., M. Salani, M. Bierlaire. 2007. A column generation algorithm for disrupted airline schedules.

Tech. Rep. TRANSP-OR071203, Transport and Mobility Laboratory of Ecole Polytechnique Fdrale de

Lausanne, Lauzanne, Switzerland.

Filar, J. A., P. Manyem, K. White. 2001. How airlines and airports recover from schedule perturbations: a

survey. Annals of Operations Research 108 315–333.

Lettovsky, L. 1997. Airline operations recovery: an optimization approach. Ph.D. thesis, Georgia Institute

of Technology, Atlanta, USA.

Lettovsky, L., E. L. Johnson, G. L. Nemhauser. 2000. Airline crew recovery. Transportation Science 34

337–348.

Medard, C. P., N. Sawhney. 2007. Airline crew scheduling from planning to operations. European Journal

of Operational Research 108 1013–1027.

Palpant, M., M. Boudia, C. A. Robelin, S. Gabteni, F. Laburthe. 2009. Roadef 2009 challenge: disruption

management for commercial aviation. Available online at http://challenge.roadef.org/2009/sujet.en.htm.

Stojkovic, M., F. Soumis, J. Desrosiers. 1998. The operationnal airline crew scheduling problem. Trans-

portation Science 32 232–245.

Teodorovic, D., S. Guberinic. 1984. Optimal dispatching strategy on an airline network after a schedule

perturbation. European Journal of Operational Research 15 178–182.

Thengvall, B., J. Bard G. Yu. 2001. Multiple fleet aircraft schedule recovery following hub closures. Trans-

portation Research Part A 35 289–308.

Wei, G., G. Yu, M. Song. 1997. Optimization model and algorithm for crew management during airline

irregular operations. Journal of Combinatorial Optimization 1 305–321.

19

A List of notations introduced in Section 2

RTW recovery time window; RTW = [RTWs;RTWe]

A set of airports

clha maximum number of landings that can occur during the time window

h ⊆ RTW at airport a ∈ A

ctha maximum number of takeoffs that can occur during the time window

h ⊆ RTW at airport a ∈ A

P set of aircraft

cmax
p seat capacity of aircraft p ∈ P

σp rotation of aircraft p ∈ P

Σ set of rotations; Σ = {σp|p ∈ P}

Op origin airport of σp; Op ∈ A

σp(i) ith leg in σp

σo
p(i) origin airport of σp(i); σ

o
p(i) ∈ A and σo

p(1) = Op

σf
p (i) destination airport of σp(i); σ

f
p (i) ∈ A

σd
p(i) departure time of σp(i); σ

d
p(i) ∈ RTW

σa
p(i) arrival time of σp(i); σ

a
p(i) ∈ RTW

σc
p(i) remaining seat capacity of σp(i)

rmax
p maximum range of aircraft p

tr turnaround delay

trp earliest possible takeoff time for aircraft p ∈ P

Pm set of aircraft that must undergo a maintenance during RTW; Pm ⊆ P

G set of passenger groups

sg size of passenger group g ∈ G

Og origin airport of passenger group g; Og ∈ A

Dg destination airport of passenger group g; Dg ∈ A

pg ticket price of passenger group g

wg ”inbound trip” or an ”outbound trip” status of passenger group g

γg itinerary of passenger group g

Γ set of itineraries of all passenger groups; Γ = {γg|g ∈ G}

γg(i) ith leg in itinerary γg

|γg| number of legs in γg

γo
p(i) origin airport of γg(i); γ

o
p(i) ∈ A and γo

p(1) = Op

γf
p (i) destination airport of γg(i); γ

f
p (i) ∈ A

γd
p(i) departure time of γg(i)

γa
p (i) arrival time of γg(i)

cd connection delay between two consecutive legs of an itinerary

trg earliest possible time of departure of passenger group g; trg = γd
g (1)

tdg latest possible time of arrival of passenger group g

D set of flight delays

C set of flight cancellations

B set of aircraft breakdowns

R set of airport capacity reductions20

