The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks - ANITI - Artificial and Natural Intelligence Toulouse Institute
Article Dans Une Revue International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Année : 2024

The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Résumé

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.
Fichier principal
Vignette du fichier
the-uav-feasibility-trajectory-prediction-using-convolution-neural-networks.pdf (714.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04844569 , version 1 (18-12-2024)

Licence

Identifiants

  • HAL Id : hal-04844569 , version 1

Citer

Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry. The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2024, 18 (10). ⟨hal-04844569⟩
0 Consultations
0 Téléchargements

Partager

More